
On the Use of Mutation 
Analysis for Evaluating Student 

Test Suite Quality
James Perretta1, Andrew DeOrio2, Arjun Guha1, Jonathan Bell1

1Northeastern University, 2University of Michigan

1



Grading Student Test Suites Is Laborious

● Need to teach students how to test software
● Test suite quality metrics can be used as pedagogical tools
● Two typical approaches for grading test suites: both require significant effort

Instructor seeds 
faults

Run each student test suite 
on each student 
implementation

Students provide 
(possibly buggy) 
implementations

Run each student test 
suite on seeded faults

Grading student tests with 
manually-seeded faults

Grading student tests with “All-Pairs” 
(requires student implementations, too)

2



Mutation Analysis Could Emulate These Approaches

● Evidence in prior work that mutants are a valid substitute for faults in OSS
○ Does this generalize to student-written code?

● No prior evidence that mutants are a valid substitute for manually-seeded 
faults

● Prior work reaches conflicting conclusions on mutation analysis for evaluating 
student-written tests

3



An Empirical Study on the Use of Mutation in Grading

● Examine whether mutation analysis is effective way of evaluating student 
tests

● Large-scale empirical evaluation of student test suites in 2 grading scenarios

RQ1: Is mutation score a good proxy for manually-seeded fault detection 
rate?

RQ2: Is mutation score a good proxy for faulty student implementation 
detection rate in an “all-pairs” grading approach?

4



Empirical Study - Datasets & Tools

● 2,711 assignment submissions total (1 submission/student/assignment)
● Independently-developed impls of the same spec

Mutation Analysis Tools:
● Stryker Mutator (JS/TS)
● Mull (C++)

5



Guarding Against False Positives

● Need to detect test cases that make incorrect assertions
○ Otherwise, a single test with assert(false); would incorrectly receive full credit

● Common solution: Run student test suite against one or more correct impls 
before running it against faulty impls

● Instructors use minor variations on this approach
○ We used the same approach as in the original assignment grading

6



Mutation Detection Is Correlated with Manually-Seeded Fault Detection (RQ1)

7



Correlation Is Statistically Significant When Controlling for Coverage

● Control for coverage w/ methodology from Just et al.
● Detecting more manually-seeded faults -> Higher mutation score

8



Mutation Detection Is Correlated with “All-Pairs” Faulty Impl Detection (RQ2)

9



Not All Faults Are Coupled to Mutants

A few unique student faults were not coupled to a mutant generated by Mull

 Game Card Game Player

Unsupported Mutation Op 5 9

New/Stronger Mutation Op 3 2

Different Impl Structure 7 1

No Mutant 0 14*

Total 15 26

*These faults caused by algorithm flaws, added logic, or incorrect invariant assumptions
10



Summary of Findings

● Mutants are a very good substitute for manually-seeded faults
○ Strong correlation on 4/5 assignments
○ Avoid low-quality faults like in the Sorting assignment

● Mutants are a reasonably good proxy for all-pairs test suite grading
○ # of redundant mutants doesn’t grow with the # of students (but # of redundant faults in 

all-pairs does)
○ Correlation weakened by uneven distribution of faults across student impls

11



Implications

For Researchers: 
● Generating mutants from multiple implementations
● Additional research into test suite quality metrics on student test suites

For Educators:
● Consider using mutation analysis tools to generate faults
● Generate mutants from multiple implementations?
● Use mutation analysis outside of the assignment submission loop?

For Tool Builders:
● Better support for educational settings

○ E.g., Support a separate “mutant generation” phase
● Potential use cases for generating mutants from multiple impls or comparing 

mutation scores of multiple test suites

12


