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Grading Student Test Suites Is Laborious

e Need to teach students how to test software
e Test suite quality metrics can be used as pedagogical tools
e Two typical approaches for grading test suites: both require significant effort

Grading student tests with
manually-seeded faults
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(requires student implementations, too)
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Mutation Analysis Could Emulate These Approaches

e Evidence in prior work that mutants are a valid substitute for faults in OSS
o Does this generalize to student-written code?
e No prior evidence that mutants are a valid substitute for manually-seeded

faults
e Prior work reaches conflicting conclusions on mutation analysis for evaluating

student-written tests



An Empirical Study on the Use of Mutation in Grading

e Examine whether mutation analysis is effective way of evaluating student

tests
e Large-scale empirical evaluation of student test suites in 2 grading scenarios

RQ1: Is mutation score a good proxy for manually-seeded fault detection
rate?

RQ2: |s mutation score a good proxy for faulty student implementation
detection rate in an “all-pairs” grading approach?



Empirical Study - Datasets & Tools
e 2,711 assignment submissions total (1 submission/student/assignment)
e Independently-developed impls of the same spec

Mutation Analysis Tools:
e Stryker Mutator (JS/TS)

o Mull (C++)

Assignment School Course # of Submissions Has Student Impls # of Submissions/Day LOC
Game Card [19] UMich EECS 280 [32] 768 Yes 3 136
Game Player [19] UMich EECS 280 [32] 762 Yes 3 127
Stable Marriage [19] UMass CS220 [30] 485 Unlimited 79
WebApp [19] Northeastern (CS4530 [31] 93 Unlimited 265

Sorting [19] Northeastern (CS4530 [31] 90 5 190




Guarding Against False Positives

e Need to detect test cases that make incorrect assertions
o Otherwise, a single test with assert (false); would incorrectly receive full credit

e Common solution: Run student test suite against one or more correct impls
before running it against faulty impls

e |Instructors use minor variations on this approach
o We used the same approach as in the original assignment grading



Mutation Detection Is Correlated with Manually-Seeded Fault Detection (RQ1)
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Correlation Is Statistically Significant When Controlling for Coverage

e Control for coverage w/ methodology from Just et al.
e Detecting more manually-seeded faults -> Higher mutation score

Assignment (ffail’ Tpass) populations Significant

Game Card 15/15 15/15
Game Player 20/20 20/20
Stable Marriage 8/8 8/8
WebApp 47/48 47/47

Sorting 8/12 4/8




Mutation Detection Is Correlated with “All-Pairs” Faulty Impl Detection (RQ2)
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Not All Faults Are Coupled to Mutants

A few unique student faults were not coupled to a mutant generated by Mull

Game Card Game Player
Unsupported Mutation Op 5
New/Stronger Mutation Op 3
Different Impl Structure 7
No Mutant 0
Total 15

*These faults caused by algorithm flaws, added logic, or incorrect invariant assumptions
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Summary of Findings

e Mutants are a very good substitute for manually-seeded faults

o Strong correlation on 4/5 assignments
o Avoid low-quality faults like in the Sorting assignment

e Mutants are a reasonably good proxy for all-pairs test suite grading
o # of redundant mutants doesn’t grow with the # of students (but # of redundant faults in
all-pairs does)
o Correlation weakened by uneven distribution of faults across student impls
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Implications

For Researchers:
e Generating mutants from multiple implementations
e Additional research into test suite quality metrics on student test suites

For Educators:
e Consider using mutation analysis tools to generate faults
e Generate mutants from multiple implementations?
e Use mutation analysis outside of the assignment submission loop?

For Tool Builders:

e Better support for educational settings
o E.g., Support a separate “mutant generation” phase

e Potential use cases for generating mutants from multiple impls or comparing
mutation scores of multiple test suites
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