On the Use of Mutation
Analysis for Evaluating Student
Test Suite Quality

James Perretta’, Andrew DeOrio?, Arjun Guha', Jonathan Bell’

'Northeastern University, 2University of Michigan

o
® \
<
X

Grading Student Test Suites Is Laborious

e Need to teach students how to test software
e Test suite quality metrics can be used as pedagogical tools
e Two typical approaches for grading test suites: both require significant effort

Grading student tests with
manually-seeded faults

2

: O

Instructor seeds Run each student test
faults suite on seeded faults

Grading student tests with “All-Pairs”
(requires student implementations, too)

4)
, O
Students provide

(possibly buggy)
implementations

Run each student test suite
on each student
implementation

Mutation Analysis Could Emulate These Approaches

e Evidence in prior work that mutants are a valid substitute for faults in OSS
o Does this generalize to student-written code?
e No prior evidence that mutants are a valid substitute for manually-seeded

faults
e Prior work reaches conflicting conclusions on mutation analysis for evaluating

student-written tests

An Empirical Study on the Use of Mutation in Grading

e Examine whether mutation analysis is effective way of evaluating student

tests
e Large-scale empirical evaluation of student test suites in 2 grading scenarios

RQ1: Is mutation score a good proxy for manually-seeded fault detection
rate?

RQ2: |s mutation score a good proxy for faulty student implementation
detection rate in an “all-pairs” grading approach?

Empirical Study - Datasets & Tools
e 2,711 assignment submissions total (1 submission/student/assignment)
e Independently-developed impls of the same spec

Mutation Analysis Tools:
e Stryker Mutator (JS/TS)

o Mull (C++)

Assignment School Course # of Submissions Has Student Impls # of Submissions/Day LOC
Game Card [19] UMich EECS 280 [32] 768 Yes 3 136
Game Player [19] UMich EECS 280 [32] 762 Yes 3 127
Stable Marriage [19] UMass CS220 [30] 485 Unlimited 79
WebApp [19] Northeastern (CS4530 [31] 93 Unlimited 265

Sorting [19] Northeastern (CS4530 [31] 90 5 190

Guarding Against False Positives

e Need to detect test cases that make incorrect assertions
o Otherwise, a single test with assert (false); would incorrectly receive full credit

e Common solution: Run student test suite against one or more correct impls
before running it against faulty impls

e |Instructors use minor variations on this approach
o We used the same approach as in the original assignment grading

Mutation Detection Is Correlated with Manually-Seeded Fault Detection (RQ1)

40

of mutants detected

o 2 4 6 8 10 12 14 16
of manually-seeded faults detected

(a) Game Card

of mutants detected
5] 8 3

1)

350

300

~
a
3

200

I3
3

of mutants detected
=
2

0 2 4 6 8 10 12 14 16 18 20
of manually-seeded faults detected

(b) Game Player

1351 N =95
r=0.93
130

of mutants detected
8 & E B @&

o
=}

©
)

L]
L
o

2 4 6
of manually-seeded faults detected

(c) Stable Marriage

. 225{ N =90

r=0.24

N
N
S

N
o

of mutants detected
~ N
& 5

g

195

(d) WebApp

10 20 30 40
of manually-seeded faults detected

50 o 2

a4 6 8
of manually-seeded faults detected

(e) Sorting

10 12

Correlation Is Statistically Significant When Controlling for Coverage

e Control for coverage w/ methodology from Just et al.
e Detecting more manually-seeded faults -> Higher mutation score

Assignment (ffail’ Tpass) populations Significant

Game Card 15/15 15/15
Game Player 20/20 20/20
Stable Marriage 8/8 8/8
WebApp 47/48 47/47

Sorting 8/12 4/8

Mutation Detection Is Correlated with “All-Pairs” Faulty Impl Detection (RQ2)

o
U
-
o
3
QU
o
2
<
S
2
€
P
o
#
0 ®
0 100 200 300 400 500 600
of faulty student implementations detected
(a) Game Card, considering all student implementations
70 = =
N = 768
so{ r=0.89
°
950
W
2
a0
i}
c
830
=3
€
4 20
*
10
0q{ *

e

100 200 300 a00 500 600
of faulty student implementations detected

(c) Game Card, implementations with mutant-coupled faults

70

60

50

40

30

of mutants detected

0 100 200 300 400 500
of faulty student implementations detected

(b) Game Player, considering all student implementations

70
N =762
60
°
950
o
@
@
- a0
v
=
c
< 30
i
3
€
‘5 20
*#
10
X
o x*
o 100 200 300 400 500

of faulty student implementations detected
(d) Game Player, implementations with mutant-coupled faults

Not All Faults Are Coupled to Mutants

A few unique student faults were not coupled to a mutant generated by Mull

Game Card Game Player
Unsupported Mutation Op 5
New/Stronger Mutation Op 3
Different Impl Structure 7
No Mutant 0
Total 15

*These faults caused by algorithm flaws, added logic, or incorrect invariant assumptions

14*

26

10

Summary of Findings

e Mutants are a very good substitute for manually-seeded faults

o Strong correlation on 4/5 assignments
o Avoid low-quality faults like in the Sorting assignment

e Mutants are a reasonably good proxy for all-pairs test suite grading
o # of redundant mutants doesn’t grow with the # of students (but # of redundant faults in
all-pairs does)
o Correlation weakened by uneven distribution of faults across student impls

11

Implications

For Researchers:
e Generating mutants from multiple implementations
e Additional research into test suite quality metrics on student test suites

For Educators:
e Consider using mutation analysis tools to generate faults
e Generate mutants from multiple implementations?
e Use mutation analysis outside of the assignment submission loop?

For Tool Builders:

e Better support for educational settings
o E.g., Support a separate “mutant generation” phase

e Potential use cases for generating mutants from multiple impls or comparing
mutation scores of multiple test suites

12

