DRAIN: Distributed Recovery Architecture for
Inaccessible Nodes in Multi-core Chips

Andrew DeOriot, Kostantinos Aisoposis, Valeria Bertaccot and Li-Shiuan Pehs
tUniversity of Michigan, Ann Arbor, Ml
tPrinceton University, Princeton, NJ
sMassachusetts Institute of Technology, Cambridge, MA

ABSTRACT

As transistor dimensions continue to scale deep into the nanometer
regime, silicon reliability is becoming a chief concern. At the same
time, transistor counts are scaling up, enabling the design of highly
integrated chips with many cores and a complex interconnect fab-
ric, often a network on chip (NoC). Particularly problematic is the
case when the accumulation of permanent hardware faults leads to
disconnected cores in the system. In order to maintain correct sys-
tem operation, it is necessary to salvage the data from these isolated
nodes.

In this work, we introduce a recovery mechanism targeting pre-
cisely this issue: DRAIN (Distributed Recovery Architecture for
Inaccessible Nodes) provides system-level recovery from perma-
nent failures. When an error disconnects a node from the network,
DRAIN uses emergency links to transfer architectural state and
cached data from disconnected nodes to nearby connected caches.
DRAIN incurs zero performance penalty during normal operation,
and is compatible with any cache coherence protocol, intercon-
nect topology or routing protocol. Experimental results show that
DRAIN is able to provide complete state recovery within several
milliseconds, on average, for a 1GHz 64-node CMP at an area over-
head of only a few thousand gates.

Categories and Subject Descriptors

B.4.5 [Hardware]: Input/Output and Data Communications—Re-
liability, Testing, and Fault-Tolerance

General Terms
Reliability, Design
Keywords

Network-on-Chip, Fault-Tolerance, Recovery, Resilient Systems

1. INTRODUCTION

In server, embedded and desktop markets multi-core chips have

become mainstream, and the trend is towards increasing core counts.

To ease the programming of such architectures, most products sup-
port shared memory, along with multiple levels of caching and a
network-on-chip (NoC) that connects them. Caches enhance sys-
tem performance as they exploit temporal locality; however, they
may contain dirty copies of data, thus becoming single points of
failure should the cache become inaccessible. As the lifetime of
transistors in such complex chips decreases with each technology
node, multiple permanent faults are expected to occur in the net-
work during the lifetime of a chip [3]. If such faults result in the loss
of a network router, the caches of the corresponding node will be-
come inaccessible, thus the CMP will no longer operate correctly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2011, June 5-10, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0636-2 ...$10.00.

due to loss of unique data copies. Consequently, it is important to
explore resilient architectures that mitigate fault-induced data loss,
in order to continue normal operation with a graceful performance
degradation.

Data recovery can be a challenge: a reliable network architec-
ture should be able to detect and diagnose a network fault, recon-
figure the routing algorithm to reroute around faulty links/routers,
and finally recover the data that were affected by the fault. Vari-
ous recent NoC works have looked into detecting and diagnosing
faults, and reconfiguring the routing algorithm [5, 13], but recover-
ing data from disconnected nodes or subnetworks is an area that has
hardly been explored. A node becomes disconnected when all its
adjacent links permanently fail, or whenever a core does not have
connectivity to every other surviving core. Once a network node
is disconnected, its cached data becomes inaccessible, since there
are no functional links through which the caches can communicate
to memory and/or to surviving nodes. The authors of [5] note that
even at just 30 permanent faults, one node on average is discon-
nected, causing the entire chip to fail.

Most solutions assume that a checkpointing mechanism is avail-
able, which will roll back to a previous state where the data is
safely stored in the memory [12, 15]. However, checkpointing in-
volves a significant runtime performance and storage overhead to
pro-actively backup a large amount of data, even if the data that is
actually lost consists of just a few cache lines. To overcome such
complexity and runtime performance penalties, some techniques
propose to save the coherence data in-transit among nodes during
reconfiguration [13]. However, these only address data within the
network, and do not tackle data in the caches or processor cores
(architectural state). To the best of our knowledge, no resilient so-
lution has addressed the issue of recovering data in the event that
one or more network nodes becomes disconnected. In such situa-
tions, no network-level solution suffices.

1.1 Contributions

Our proposed Distributed Recovery Architecture for Inaccessible
Nodes (DRAIN) addresses the problem of CMP processor nodes
that have become disconnected as a result of accumulating per-
manent faults. It guarantees that processor architectural state and
dirty cache data can be safely sent to memory via dedicated cache-
to-cache emergency links, tolerating any number of disconnected
nodes. This feature, in combination with a resilient NoC, guar-
antees full system recovery in the face of unlimited network
faults. Unlike checkpointing approaches, DRAIN does not in-
cur any runtime performance overhead during normal operation,
while the additional recovery time upon a network failure is only a
few milliseconds (assuming 1GHz clock). Our solution can be im-
plemented with minimal hardware modifications, resulting in an
area overhead of a few thousand gates. Finally, it is flexible and can
work with any underlying architecture, including homogeneous
and heterogeneous chip multiprocessors, multiple shared or private
levels of caching, any network topology, any resilient routing algo-
rithm that guarantees connectivity upon link failures and any cache
coherence protocol.

2. RELATED WORK

We discuss three major areas of related work: cache reliability,
interconnect reliability and full system-level reliability solutions.
Cache Reliability. Modern designs already implement a variety of
resiliency mechanisms to protect individual caches, for example er-
ror correcting codes (ECC). ECC is able to tolerate bit-errors, often
a single bit, in datapath elements. Reconfigurable structures [1, 8]
are another common solution, where extra cache lines are added
at design time. Post fabrication, these extra lines are configured
as substitutes for faulty lines. Another reliability solution is triple
modular redundancy, typically used to protect control logic by trip-
licating it and voting among the three outputs. This solution is
very expensive in terms of area and power overhead, and further-
more provides only probabilistic reliability guarantees. While cur-
rent cache reliability approaches preserve the correctness of data,
they are localized solutions and can not handle faults due to lack of
connectivity between multiple caches in CMPs.

Interconnect Reliability. Reliable NoCs are currently an active
research area, with a range of solutions that enable a network to
reconfigure around faults. Some solutions are able to reconfigure
interconnect routes as long as errors remain within bounds, such as
up to five faults [6]. Others allow an unlimited number of faults,
but require that the faults lie within a homogeneous region, which
may need to be convex [16]. This may require disabling functional
routers to satisfy region requirements. Finally, a few solutions exist
that do not place bounds on either the number or the configuration
of faults [5, 13]. In these works, the network degrades as the num-
ber of faults increases: links break and nodes may become discon-
nected over time. While these solutions provide a mechanism for
reconfiguring the interconnect and routing around faults, they are
at the network level and do not address the problem of recovering
data from nodes that become disconnected.

System-level reliability. By contrast, checkpointing schemes [12,
15] can be leveraged to provide error recovery for the network,
attempting to recover system state when an error is detected. A
checkpoint-enabled system logs cache data and architectural state,
periodically copying these data to main memory. In the event of an
error, state can be recovered from the logs in memory and the sys-
tem is rolled back to an earlier execution point. These mechanisms
work in a proactive manner, always preparing for an error. Conse-
quently, they require significant hardware overhead to accommo-
date buffers, which can be on the order of 512KB in size [15].
Moreover, they incur performance overheads during normal opera-
tion, which can exceed 6% [12], an overhead that is incurred even
in the absence of errors.

In short, existing cache protection schemes are not able to re-
cover data when a node becomes disconnected, and existing net-
work protection approaches are not able to recover cache or state.
Checkpointing mechanisms can recover system state, but at a sig-
nificant hardware or performance cost. These limitations suggest
reactive methods that might provide recovery functionality, while
avoiding costly hardware and performance overheads. DRAIN tack-
les precisely these goals. It is a reactive recovery design that is
highly robust, able to recover data from a faulty system, even when
multiple nodes have become disconnected by an interconnect error.
It incurs zero performance overhead during normal operation, only
reacting to the detection of an error, and it has a low area overhead.

3. DRAIN ARCHITECTURE

The DRAIN solution augments a CMP with dedicated “emer-
gency links” operated by distributed hardware controllers and con-
necting nearby caches. When an error is detected, DRAIN sus-

DRAIN distributed

= controller
- DRAIN
emergency link

processor
core

.
: data bit
local cache -

primary lir

memory
controller

-y ”

Figure 1: DRAIN-enabled system. An existing CMP is aug-
mented with emergency links and small controllers to transfer the
data from caches that have become disconnected.

pends execution, flushes dirty cache data and architectural state
to memory, and then allows the OS to re-map the address space.
Normal operation can then resume, with all data prior to the error
recovered.

Figure 1 shows the high-level modifications to a CMP archi-

tecture that are required to implement DRAIN. The baseline sys-
tem consists of nodes, each with a processor core, local cache and
router, with some nodes also connected to memory controllers.
Nodes communicate through a flexible interconnect, in this case,
a network on chip (thick lines in Figure 1). DRAIN adds 2-bit net-
work links that connect neighboring caches together (thin double
lines in Figure 1), with one bit for data and one for control. The
emergency links are used only during recovery, when a node or a
subnetwork becomes disconnected, in order to recover cache data
and architectural state that would otherwise be lost.
Recovery Overview. The error recovery process begins with the
detection of an error by either hardware or software, typically han-
dled by the underlying reliable network (Figure 2). Error detec-
tion has been extensively researched [4, 7] and is not the focus of
this work. When an error renders all links to a node inoperable, a
special interrupt designed for DRAIN is issued to the processors,
causing all state required to resume the running processes to be
saved. This information is typically stored in a Process Control
Block (PCB). The PCB includes the PID, architectural registers (in-
cluding the program counter, load/store queue, stack, etc.), address
space, I/0 port permissions, stack pointers, etc.

Next, the network reconfigures, reestablishing communication
among the processing elements that remain connected. A variety
of schemes are possible here, for example [5, 10, 13], as long as the
interconnect enables the communication of functioning units and
avoids the loss of in-transit packets. The newly reconfigured net-
work is reflected in the figure by the disabled primary links, which
leads to the occurrence of a newly isolated node, shown by the
missing router (dashed) connected to a local cache and processor.
Emergency link transfer. Next, DRAIN transfers data via a com-
bination of primary and emergency links, shown in the bottom row
of Figure 2. First, the nodes that remain connected to main mem-
ory following network reconfiguration are informed by the reliable
network of their connectivity via the emergency link control bit.
These nodes drain their state via the main network (step 1 in the
bottom row of Figure 2). DRAIN interacts with the system’s co-
herence mechanism to transfer the address and data of only those
cache lines that are dirty to main memory. For example, in the
write-invalidate cache coherence protocol with MOEST states, lines
in the M (modified) or O (owned) state may be dirty, including lines
in a transition state. The processor’s architectural state is then trans-
ferred to a (now evicted) cache line, enabling DRAIN to transfer the
state. The Process Control Block executing on the node is included
in the transferred state.

Once all the connected nodes have transferred their architectural
state and emptied their caches, they advertise to each neighbor in

routing
updated

reconfigure ! recover state via |

interconnect 1| _emergency links

resume execution

|
-

1. drain connected
nodes via network node data via emergency link

3. drain connected
node again

2. transfer disconnected

Figure 2: DRAIN system operation recovers state when an error
occurs, allowing the system to be reconfigured and resumed with-
out losing information. The DRAIN algorithm operates in three
major steps, first draining connected nodes via the existing inter-
connect. Next, disconnected nodes’ data is transferred to a nearby
connected node, and from there transferred to main memory.

turn that they are ready to receive data over the emergency link con-
trol bit. In step 2, cache data and state from the disconnected node
are transferred one bit at a time over the emergency link, facilitated
by the distributed DRAIN controllers (shown by the hashed portion
of the cache in Figure 1). A target node, which accepts a transfer
from the disconnected node, ceases to advertise that it is ready to
receive as the transfer begins. When a destination cache receives a
cache line, it writes the line to the appropriate address, marking it
as dirty in the destination cache. Upon completing the transfer, the
target node drains its cache contents again to main memory (step
3 of Figure 2). At this point, all dirty cache data and architec-
tural state in the entire CMP system has been transferred to main
memory, allowing the operating system to remap addresses and
processes (PCBs) to the surviving processor nodes. The reliable
network signals the processors to wake up. A processor waking
from a DRAIN interrupt will generate a memory request to retrieve
a PCB and resume normal operation. This enables the OS to flexi-
bly re-assign PCBs upon resume. The resume process proceeds in
a similar fashion as a processor switching to a new process during a
context switch. Finally, normal execution can resume on the newly
recovered system.

3.1 Recovery Algorithm

Triggered by a detected failure, DRAIN’s distributed recovery
algorithm ensures that all cache data and architectural state reaches
main memory. Leveraging both the emergency links as well as
the correctly functioning portion of the primary interconnect, the
algorithm finds the most efficient combination of both to deliver all
data and state to memory.

To enable the operating system to remap the workload onto the
reduced system resources, all caches in the system must be drained,
even those that remain functional and connected. The first step in
the DRAIN algorithm is to transfer data in the nodes connected
to memory via primary links. Dirty cache lines are first written
back, followed by architectural state. For architectural state trans-
fer, each register or state element is first copied to a cache line in
the recently drained cache. Finally, the drained cache advertises
that it has completed this step via the control bit of the emergency
link. Thus, other caches become able to use this cache space as

1 drain_via_emergency_link (this_node)

2 while target_cache not found

3 for each neighbor

4 if neighbor is connected and empty

5 target_cache = neighbor; break;

6 if target_cache not found

7 for each neighbor

8 if neighbor is toward boundary and empty
9 target_cache = neighbor; break;

10 for each dirty cache_line

11 copy_line to target_cache
12 for each register/state_element
13 copy_register to target_cache

Figure 3: DRAIN uses an emergency link for disconnected
nodes, scanning its neighbors for a connected node to which it
transfers dirty cache lines and architectural state.

target node in transferring the contents of a disconnected node.

If the node in question is not connected to main memory via pri-
mary links, emergency links are used to recover its data. The emer-
gency links operate by copying the lines of the disconnected cache
to a nearby neighbor, as detailed in Figure 3. First, the disconnected
node scans the control bits of the emergency links to its neighbors
(Figure 3 lines 2-5), attempting to find a neighbor that has a route
to main memory. If available, it selects the first such neighbor that
advertises an empty cache, using it as the transfer target. If no
such neighbor exists, as in the case of a large, disconnected sub-
network, then the emergency links transfer through intermediate
nodes to reach one that is connected. In this case, a node will try
to find a target cache that is connected to main memory and fail.
The fallback procedure is to do a cache-to-cache transfer towards
the outer boundary of the disconnected subnetwork, which is ascer-
tained from the routing logic in the reliable network (Figure 3 lines
6-9). The transfer is described by lines 10-11 of Figure 3, where
the emergency link controller iterates over each dirty cache line,
transferring the dirty data, along with its address. Then, architec-
tural state is transferred to the target cache as shown in lines 12-13.
Finally, the target node, upon receiving the data, will be analyzed
again to find the next best step towards main memory. If the target
node has no direct route to memory, data will traverse several other
nodes before reaching memory via primary and emergency links.

3.2 Discussion

Emergency links. In order to ensure their correct operation, emer-
gency links are used only during a DRAIN recovery, and are oth-
erwise disabled with power-gating. Due to their infrequent use and
power-gating, emergency links realize a significantly lower risk of
wearout-induced permanent faults, as well as negligible power con-
sumption during normal operation. The low area profile of the
emergency links further reduces their exposure to failures. Reli-
ability can be enhanced even further by adding ECC or TMR to the
emergency links, a reasonably cheap solution for a two-bit link (3
additional bits for fully correctable ECC or 4 bits for TMR).
DRAIN is a flexible system, and can support a variety of archi-
tectures, as long as caches can be connected together with emer-
gency links. While our experimental results focus on an NoC ar-
chitecture with private L1 and L2 caches at each node, other con-
figurations are possible. The key component is for the caches to be
connected via emergency links, and for the existing interconnect to
be fault-tolerant. The existing on-chip fabric does not weigh on the
emergency link design, thus any CMP architecture is supported, as
long as it can reconfigure around faults, and it remains connected
to main memory, enabling correct operation once DRAIN has suc-

cessfully recovered the data from disconnected nodes. As faults
increase, the possibility of a disconnected memory controller be-
comes a more realistic scenario, rendering the system inoperable
even after reconfiguration. In a safety critical system, a variety of
enhancements are possible to ensure that main memory remains
connected to the network. The addition of redundant links to main
memory is a high-performance solution. Alternatively, emergency
links can be added from connected memory controllers to nearby
caches, thus creating more routes for draining from caches to main
memory.

Simultaneous faults. Failures in any configuration are supported
by DRAIN. System failures accumulate as wearout-related faults
occur throughout the lifetime of the chip. The frequency of fault oc-
currence is reflected by the Mean Time Between Failures (MTBI),
typically measured in the order of months or years [11], conse-
quently multiple faults occurring at the exact same time are un-
likely. Thus, our solution supports any total number of faults oc-
curring through the lifetime of a chip, but one at a time. Since fault
rates remain an active research area, we present our results in terms
of absolute numbers of faults.

Heterogeneous multi-cores. Nodes in the system can be either ho-
mogeneous or heterogeneous, and caches can be of any size. While
different processing elements do not affect the DRAIN system, the
emergency link controllers must be adapted for non-uniform cache
sizes. In case of different cache sizes at different nodes, the DRAIN
controllers are augmented with a small amount of additional logic
to allow the transfer of partial cache contents, supporting the case
where a large cache must be drained to a smaller one. The larger
cache transfers dirty lines until the smaller target cache is full, upon
which the target cache flushes its contents to main memory via the
emergency links. This process is repeated until the entirety of the
larger cache has been drained. Systems with uniform cache size
can be optimized so that entire caches can be transferred without
additional logic.

Cache configuration. Whether caches are inclusive or exclusive
is a consideration in a DRAIN implementation. In the case of in-
clusive caches, only the higher level (farthest from core) inclusive
caches must be transferred, with the lower level caches first being
written back to the higher level cache. Exclusive caches must be
transferred separately, copying the contents to a similar cache. In
this case, a single emergency link can be shared by multiple levels
of exclusive caches, with the addition of logic to support sharing the
link. Another architecture to consider is the case of write-through
caches. Here, the data from caches is already present in main mem-
ory, thus, when a node becomes disconnected, no cache data is truly
lost. However, architectural state must still be transferred via the
emergency links.

4. HARDWARE IMPLEMENTATION

Implementing DRAIN in a chip multiprocessor requires mini-
mal hardware modifications, as it maximizes the reuse of existing
cache controller logic (Figure 4). In order to transfer a line in our
setup, it is necessary to transfer both data (512 bits) and address
(32 bits), a total of 544 bits per transferred cache line, correspond-
ing to 544 cycles of communication delay. Architectural state is
transferred in a similar fashion, since it is first copied to a recently
drained cache line. By increasing the number of data bits, it is
possible to facilitate faster communication but, as we found in our
experimental results, transfer time over the emergency links is not
a performance-limiting factor. On average, about 4% of the total
recovery time was spent in emergency link transfers: while adding
bits to the emergency link would reduce this value, the remaining
96% of the time spent flushing data via primary links would not be

improved. Furthermore, since reconfiguration is a rare event, the
design trades off time for area by serializing communication.

primary link input additional She logic
['0'0‘ »00’3 +
emergency link input serial to 225
[R5 parallel ¥ £
ats el way 0 === way N

data | set0

" DRAIN- | ¢
enabled counter.
control logic

s
s
B

RS

1

1

1

I

1

1

1

1
F
data | gt M :
1

1

1

1

1

1

1

1

e X F——————____

prim;ry link output
DRAIN "

datad emergency
link output
——

Resseere
iotetetetsss?]

Figure 4: DRAIN-enabled cache controller with hash marks in-
dicating hardware additions. During emergency link operation,
cache control is taken over by small counters which iterate over
the cache lines, serializing the data for transmission over the emer-
gency links. When operating as a target cache, the received data is
de-serialized and written to the cache.

The emergency links are controlled by small hardware units aug-
menting each cache controller, shown in Figure 4 with hash marks.
Muzxes are added to the control and data inputs of the existing cache
controller (marked by the dashed box in Figure 4), allowing the
emergency links to take control of the cache. During DRAIN op-
eration, that is, recovery, a cache can either send data or receive it.
When a cache is operating as a target cache receiving data, data en-
ters via the emergency link, and it is first de-serialized by a register
the size of a cache line’s data and address at the input. Next, data is
written to the cache using the existing cache controller hardware.

Sending data over the emergency links requires iterating over
each line in the cache, which is accomplished by the set and way
counters of Figure 4. These counters determine which cache line to
read, and the data is then stored in the parallel to serial converter,
which sends it over the emergency link. The address is sent together
with the cache data, reconstructed from set, tag and block offset.

The DRAIN controller is designed to minimize hardware over-
head, maximizing reuse of existing hardware. It is a simple mech-
anism, and since the cache is not being used in its normal capacity
during a transfer, it is not necessary to add an additional cache port.
As Figure 4 shows, the DRAIN logic is switched on via a mux
controller during recovery. After recovery is complete, control is
returned to the normal cache controller logic.

4.1 Area Overhead

As detailed in Section 4, DRAIN requires minimal hardware
modifications. Figure 4 demonstrates the basic hardware structures
that need to be added to each cache to implement the emergency
links, which are a few counters and multiplexers. Table 1 shows
the logic to implement these structures, on a sample L1-L2 pri-
vate cache system, together with their 2-input AND equivalent gate
count. The total overhead per node adds to 4,952 gates (2,466 gates
for L1 and 2,486 gates for L2), negligible compared to a core’s gate
count, which is on the order of hundreds of millions of gates.

S. EXPERIMENTAL RESULTS

We evaluated an implementation of DRAIN on a 64-node ar-
chitectural simulator, injecting a variety of faults in the underlying

155

N
[l

150
1
1

B
o

1

w
[

M before recovery
M after recovery

L1 cache (64KB 4-way) | L2 cache (IMB 4-way)
row counter 40 gates 60 gates
way counter 10 gates 10 gates
data multiplex 1,632 gates 1,632 gates
index multiplex | 24 gates 36 gates
way multiplex 6 gates 6 gates
tag multiplex 54 gates 42 gates
serial-to-parallel | 350 gates 350 gates
parallel-to-serial | 350 gates 350 gates

2,466 gates 2,486 gates
TOTAL 4,952 gates grand total

Table 1: Additional gates required at each node to implement
DRAIN. Each line in the table corresponds to a hashed component
in Figure 4. Each node requires a total of 4,952 additional gates.

network-on-chip. We used the SPLASH?2 benchmarks as our work-
loads to evaluate performance during a system recovery.

5.1 Experimental Setup

We implemented DRAIN in the memory model (Ruby) of the
Wisconsin Multifacet GEMS simulator [9]. We simulated full sys-
tem recovery by combining DRAIN with an on-chip implementa-
tion of the up*/down* resilient routing algorithm, which was imple-
mented within GEMS’ Garnet network model [2]. The parameters
of our experimental setup are shown in Table 2. To evaluate our
scheme under real workloads, we used SPLASH?2 benchmark [14]
traces, injecting an additional fault and triggering a recovery af-
ter one million instructions. We evaluated full system recovery for
both fully connected and partially connected networks.

network topology
L1 configuration
L1 functionality
L2 configuration

8x8 2D mesh, 5-stage wormhole routers
4-way, 64KB, 64-byte block, 2-3 cycle latency
private, unified, write-back

4-way, IMB, 64-byte block, 4-6 cycle latency
L2 functionality private, unified, inclusive, write-back

memory 4GB, 160-cycle access latency

coherence protocol | MOESI states, directory

Table 2: Experimental setup for a 64-node system.

Fault Model. To evaluate our solution with a variable number
of disconnected nodes, we generated 100 faulty topologies, cor-
responding to 100 different random seeds, for various numbers of
network faults (0, 10, 20, ..., 100) for a total of 1,100 topologies.
We examine fault-tolerance in terms of absolute fault counts, since
the fault rates needed for MTTF calculations remain an open re-
search area. Our fault model uniformly injects gate-level faults in
the router logic, similar to the fault model of Vicis [5]. Faults were
not injected in the emergency links, since these are power-gated
off during normal operation, allowing them to avoid wear-out re-
lated failures. We then identified the subnetwork connected to the
main memory and marked all of its nodes as connected; the re-
maining nodes were marked as disconnected. Next, we mapped
the address space to the connected nodes and simulated our bench-
marks. After 1 million instructions, when the system is warmed
up, we injected an additional fault, resulting in a DRAIN invoca-
tion. This single fault models the expected real-world scenario,
since it is unlikely that more than one permanent fault occurs at the
same time: the frequency of fault occurrence is typically measured
in the order of days or months. Consequently, our performance
measurements correspond to the worst case scenario: applications
penalized for the rare occurrence of a permanent fault. We note that
some fault-injected topologies result in disconnected memory con-
trollers, making it impossible for the cores to reach main memory.

avg. memory latency (cycles)

130 IIIIIIIIIIlI

10 20 30 40 50 60 70 80 90 100 avg
injected faults

Figure 5: Average memory latency increases as faults increase,

reflecting the limited routes in a fault-injected network. Beyond 70

faults, it begins to decrease, as the size of the connected networks

shrink. We show the average latency before and after recovery,

averaged over all benchmarks.

N
v
o

B before recovery M after recovery

= = N
o wu o
] o S

avg. memory latency (cycles)
w1
o

N
N & & S N4
7,«° \& & oq’ ~o" (Z’ @ \kQ' 'z§ >
7 ® © > $ S & K
& & NI
J
&

Figure 6: Average memory latency by benchmark for 50 faults,
before and after recovery. Latency increases after recovery due to
additional network failures: note that it also varies according to the
volume of traffic.

The probability of these cases ranged from less than 1% with 10
faults, to almost 88% with 100 faults. Since topologies without a
connection to memory are not useful even when reconfigured, we
considered only those topologies that remained connected to main
memory.

5.2 System Performance with Faults

We first examine the impact of recovery on overall system perfor-
mance, by measuring average memory latency, which reflects the
expected time to retrieve a line from the memory hierarchy. Figure
5 shows the average memory latency as a function of injected faults,
with each datapoint reflecting an average over all SPLASH bench-
marks with 100 faulty topologies each. The two bars correspond
to the average memory latency before and after the recovery is in-
voked, with the benchmark resuming execution after an additional
injected error. On average, we note a small increase in the aver-
age memory latency after recovery, less than 5 cycles (or 3%), due
to the resulting topology providing fewer paths to connect the sur-
viving nodes. We also observe that while faults increase, average
memory latency (before and after recovery) also increases, the re-
sult of more disconnected nodes, and thus more lines to drain. This
peaks at 70 faults and then decreases again as the network becomes
partitioned, resulting in several subnetworks. In Figure 6, we also
show the average memory latency for each benchmark, before and
after recovery at 50 faults. We observe that for benchmarks that

5M
M average time to flush architectural state
average time to flush cache lines
4aM [pr—
- [—
- -

3M - -
-

2M

drain time (cycles)

im

oM
0 10 20 30 40 50 60 70 80 90 100
injected faults
Figure 7: Drain time partitioned by cache and architectural
state. Cycles to drain the entire network, averaged over all bench-
marks. The time to drain architectural state is a function of the
number of cores, which decreases as faults increase.

do not need much global coordination (thus do not generate high
traffic), such as /u, the average memory latency only slightly in-
creases as faults increase. On the other hand, benchmarks with high
traffic, such as volrend, are penalized at increasingly faulty topolo-
gies (average memory latency increases significantly), since fewer
available paths are available for their threads to communicate.

5.3 Recovery Time

Figures 7 and 8 show the time required for DRAIN to flush all
connected caches as the number of faults increases. Each datapoint
is an average over all SPLASH benchmarks, where each bench-
mark was evaluated over 100 randomly generated faulty topologies.
We observe that for most topologies, the time to recover ranges
from 3 to 4 million cycles (just a few milliseconds at 1GHz clock),
a reasonable penalty for a rare event. The drain time can be parti-
tioned based on the data that is drained (cache lines or architectural
state, Figure 7), or the communication medium (emergency links or
on-chip network, Figure 8). Figure 8 shows that the majority of the
time is consumed in the on-chip network, because upon recovery,
all caches flush their data concurrently, resulting in high network
traffic and congestion. In the same figure, we observe that, although
the total time to drain data decreases with increasing faults, the time
to flush data via the emergency links increases. Upon further inves-
tigation, we found that for networks with a large number of faults,
an additional fault is likely to disconnect multiple nodes, or break
the network into several partitions; consequently, more lines have
to be copied from disconnected nodes using the emergency links.

Figures 7 and 8 both reflect an overall trend of decreasing total
drain time. This is the result of the decreasing number of connected
nodes prior to a drain and therefore a decreasing amount of data to
be drained. During the drain, both connected and newly discon-
nected caches are drained concurrently.

6. CONCLUSIONS

In this work we have introduced DRAIN, a recovery mechanism
targeting large scale CMPs. DRAIN augments a CMP intercon-
nect architecture with emergency links that facilitate the recovery
of dirty cache data and architectural state in the event that a node or
subnetwork becomes disconnected. In our experimental results, we
show that DRAIN is able to recover data from disconnected nodes
in any faulty network configuration, even those where aggressive
failures cause network partitioning. It is able to provide complete
state recovery for an entire 64-node CMP within several millisec-
onds and it incurs very low area overhead of 4,952 gates at each

5M . - -
M average time to flush data via emergency links

M average time to flush data via primary links

<

4M
3
2

oM ||||I|IIIII

drain time (cycles)
<

1

<

10 20 30 40 50 60 70 80 90 100
injected faults
Figure 8: Drain time partitioned by emergency and primary
links. Cycles to drain the entire network, averaged over all bench-
marks. The drain time decreases as the number of faults increases,
reflecting the decreasing surviving network size due to faults.

node. Thus, we demonstrate that DRAIN is an effective recovery
solution for large scale CMP systems.

Acknowledgments

The authors acknowledge the support of the Gigascale Systems Re-
search Center, one of six research centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Research Cor-
poration entity. We are also grateful for the helpful input from An-
drea Pellegrini in the development of this work.

7. REFERENCES
[1] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy. IEEE Trans. VLSI
Systems, 13(1), 2005.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. Garnet: A detailed on-chip
network model inside a full-system simulator. Proc. ISPASS, 2009.

[3] S. Borkar, N. P. Jouppi, and P. Stenstrom. Microprocessors in the era of
terascale integration. In Proc. DATE, 2007.

[4] S. Constantinides, K.and Plaza, J. Blome, V. Zhang, B.and Bertacco, S. Mahlke,
T. Austin, and M. Orshansky. Bulletproof: a defect-tolerant cmp switch
architecture. In Proc. HPCA, 2006.

D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester. Vicis: a

reliable network for unreliable silicon. In Proc. DAC, 2009.

[6] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A. Nordbotten,

O. Lysne, and T. Skeie. An efficient fault-tolerant routing methodology for
meshes and tori. IEEE Computer Architecture Letters, 3(1), 2004.

[7] M. Hosseinabady, A. Banaiyan, M. N. Bojnordi, and Z. Navabi. A concurrent

testing method for NoC switches. In Proc. DATE, 2006.

H. Lee, S. Cho, and B. R. Childers. Performance of graceful degradation for

cache faults. Proc. IEEE VLSI Symposium, 0, 2007.

[9] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,

K. Moore, M. Hill, and D. Wood. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer
Architecture News, 33(4), 2005.

[10] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie. Segment-based
routing: An efficient fault-tolerant routing algorithm for meshes and tori. In
Proc. IPDPS, 2006.

[11] S.S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proc. MICRO, 2003.

[12] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective architectural
support for rollback recovery in shared-memory multiprocessors. In Proc.
ISCA, 2002.

[13] V. Puente,J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap and
robust fault-tolerant packet routing mechanism. ACM SIGARCH Computer
Architecture News, 32(2), 2004.

[14] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel
applications for shared-memory. ACM SIGARCH Computer Architecture News,
20(1), 1992.

[15] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: improving the
availability of shared memory multiprocessors with global checkpoint/recovery.
In Proc. ISCA, 2002.

[16] J. Wu. A fault-tolerant and deadlock-free routing protocol in 2D meshes based
on odd-even turn model. IEEE Trans. Computers, 52(9), 2003.

[5

[8

