Vicis: A Reliable Network for Unreliable Silicon

Andrew DeOrio, David Fick, Jin Hu, Valeria Bertacco, David Blaauw, Dennis Sylvester

Electrical Engineering & Computer Science Department The University of Michigan, Ann Arbor

Network-on-Chip

- Growing design complexity \rightarrow modular architectures
- Network-on-Chip (NoC)
 - Components (processors, memory, etc.) communicate via routers
 - Scalable bandwidth, inherent redundancy

Transistor Wear-Out

- Technology-scaling increases likelihood of wear-out
- Reasons include: oxide breakdown, electromigration, etc.

Transistor Wear-Out

- Technology-scaling increases likelihood of wear-out
- Reasons include: oxide breakdown, electromigration, etc.

Technology-scaling \rightarrow shorter useful life

Transistor Wear-Out

- Technology-scaling increases likelihood of wear-out
- Reasons include: oxide breakdown, electromigration, etc.

System Response to Wear-Out

Fault Tolerance Strategy

Outline

- Architecture Overview
- Diagnostic Approach
- Experimental Results
- Conclusion

Network Assumptions

- Wormhole routing
- 2D mesh or torus
- Static routing
- No virtual channels
- Hard fault injection

Input Port Swapping

- Partial crossbar gives multiple connection options
- Priority given to local port in order to increase # of available IPs

Input Port Swapping

Bypass Bus

- Provides alternative path around crossbar
- Round-robin arbiter inside controller
- No penalty for single user, additional users must stall until free

Error Correction Codes

- Six available paths between two routers
- Only one fault may be corrected by ECC
- Fault information for five unit types must be considered:
 - Crossbar, bypass bus, network link, input port swapper, FIFOs
- All configurations must be performed simultaneously
 - Configurations affect each another, network wide

Error Correction Codes

Network Re-routing

[DATE 2009]

- Distributed routing algorithm
- Can route around an arbitrary number of faulty links
- Requires no virtual channels
- Implemented in fewer than 300 gates

Hard Fault Diagnosis

Hard Fault Diagnosis

Pattern Based Testing

 Error unit, crossbar controller, routing table, decode/ECC, output ports, FIFO control

Datapath Testing

 FIFO datapath, input port swapper, links, crossbar, bypass bus, configuration table

Experimental Setup

- 3x3 Torus
- 32-bit data flits, 32 flit buffers
- Implemented in Verilog
 - Synthesized, automatic place and route in 45nm
 - Reliability results
- Implemented in C++
 - Performance results
- Injected stuck-at faults on gate outputs
 - Weighting based on gate area
- 10,000 packets per test, random uniform traffic
 - Parallel packet injection

Results – Router Reliability

Results – Network Performance

Results – Network Performance

Results – Network Reliability

Conclusion

- Vicis can tolerate a large number of faults
- Vicis provides much greater reliability than NMR based solutions
 - Vicis: constant-reliability, probabilistic performance
 - NMR: constant-performance, probabilistic reliability
- Vicis has an overhead of 42% versus 100+% for NMR