
Human vs. Automated Coding Style
Grading in Computing Education

James Perretta, Westley Weimer, and Andrew DeOrio,
University of Michigan

ASEE Annual Conference and Exposition, June 2019

Motivation

• Code review and good coding style are important
for writing maintainable software (McIntosh 2014)

• Style grading can be worth up to 5% of overall CS1/CS2
course grade

• Grading style is time consuming, difficult to scale,
usually manual process

• Can automated static analysis tools help?

2

Code Style

• For CS1/CS2 students, build good habits and
discourage common bad ones

• e.g. Indent source code, use good variable names, don’t
copy-paste

• Modern tools exist to enforce specific coding
standards

• e.g. pycodestyle (Python), checkstyle (Java), OCLint
(C++)

3

Problem with Human Style
Grading

Submit first
project

Start
second
project

Human style
feedback on
first project

2 weeks later…

4

Style Grading: Desirable Qualities

Speed
• Students benefit from frequent,

actionable feedback (Edwards 2003)

Accuracy
• Free from false positives, students should

get the right grade

Clarity
• Students can learn from feedback and

make changes

5

Research Questions

1. Do human graders provide style grading scores
consistent with each other?

2. Are human coding style evaluation scores consistent
with static analysis tools?

3. Which style grading criteria are more effectively
evaluated with existing static analysis tools and which
are more effectively evaluated by human graders?

Goal: Identify code inspections from off-the-shelf static
analysis tools that provide high-quality style-grading
feedback.

6

Methods: Course Overview

• 943 students in one semester of a CS2 course at
the University of Michigan

• 3 hrs lecture and 2 hrs lab per week

• 5 projects, students write C++ code according to
specification

• Students could work alone or with a partner

7

Methods: Programming Project

• Examined one programming project with two
components:

• Implement several abstract data types (ADTs)
• Implement an open-ended command-line program

using the ADTs
• Instructor solution 595 lines of code
• Average student solution 857 lines of code
• Correctness feedback from automated grading

system
• Style grading evaluated manually after deadline

8

Methods: Data Collected

• 621 distinct assignment final submissions
• Style grading scores assigned by human graders
• Static analysis post hoc

Human style
grading scores

Static analysis
output

Compare

Student
submissions

9

Methods: Human Style Grading

• Hired student graders, 42 submissions each over 2
weeks

• Style rubric, 3-value scale
• Full Credit, Partial Credit, No Credit

• Written instructions on how to apply criteria

10

Methods: Style Grading Rubric

• Criteria represent common guidelines in intro programming
courses, e.g.

• Helper functions used where appropriate

• Lines are not too long

• Functions and variables have descriptive names

• Effective, consistent, and readable line indentation is
used

• Code is not too deeply nested in loops and conditionals

11

Methods: Static Analysis Inspections

• Tools must:
• Support C++
• Have configurable thresholds
• Have easy-to-parse output

• We selected tools that detect:
• Lines too long
• Blocks too deeply nested
• Functions too long
• Duplicated code

12

Results: Human Grader Consistency

Human Grader #

1* 2* 3* 4† 5† 6* 7* 8* 9* 10* 11* 12* 13† 14† 15‡

Mean 20 20 20 20 19 20 20 21 20 20 20 21 20 20 17

Stdev 2.1 1.7 1.9 1.8 2.5 2.0 1.7 1.8 2.7 2.1 2.7 1.5 1.8 1.9 4.7

Median 21 20 20 20 20 21 21 21 22 21 21 21 20 19 18

• Scores out of 22 points possible

• A third of our human graders did not assign style scores consistently
when compared to the other two thirds

13

Results: Static Analysis vs. Human
Style Grading Scores

• Human style scores are weakly correlated, if at all, with the number
of static analysis warnings

Style Criterion Static Analysis Inspection Pearson r

Line Length OCLint LongLine -0.22

Nesting OCLint DeepNestedBlock -0.21

Helper Functions OCLint HighNcssMethod -0.07

Helper Functions PMD Copy/Paste Detector -0.12

14

Results: Distributions of Static Analysis Warnings

• Significant difference between Partial Credit and Full Credit, but not b/w No
Credit and Partial Credit

• Many students were either unfairly penalized or should have been penalized
• 10% of students who received No Credit had no reported duplicated code
• 13% of students with Full Credit had at least 100 duplicated lines

Scores U p-value

No Credit vs Partial
Credit 2204 0.46

Partial Credit vs Full
Credit 17084 0.0005

15

Duplicated Lines for No Credit on “Helper Functions” Duplicated Lines for Partial Credit on “Helper Functions”

Duplicated Lines for Full Credit on “Helper Functions”

Static Analysis Limitations

• Some style criteria are too specific to be covered
by general-purpose tools

• Others are too complicated, e.g. analyzing variable
names (length isn’t enough)

• e and i generally accepted for caught exception and
loop counter

void set_players(string arg1, string arg2,
string arg3, string arg4,
string arg5, string arg6,
string arg7, string arg8) {…}

16

Limitations of the Study

• Hired graders were undergraduate students with
limited training

• Historical data, so we relied on training provided by the
course

• Student submissions contained identifiers,
potential for grader bias

• No double-marking, limits conclusions about inter-
rater reliability

17

Conclusions and Recommendations

• Human graders do not make a consistent distinction
between students who made some mistakes and those
who made many mistakes

• Up to 10% of submissions were either unfairly penalized
by humans or should have been penalized but were not

• Static analysis tools perform faster, more consistently,
and more accurately than humans when a style criterion
can be evaluated with simple rules

18

Conclusions and Recommendations

• Prefer static analysis for style criteria that can be evaluated
with simple abstract syntax tree rules

• Prefer a binary scale unless hired graders can be thoroughly
trained

• With static analysis evaluating simple aspects of code style,
a few well-trained graders can focus on more complex
aspects

• Students should be able to address static analysis feedback
and resubmit

• Better yet, let them run the tools on their own!

19

