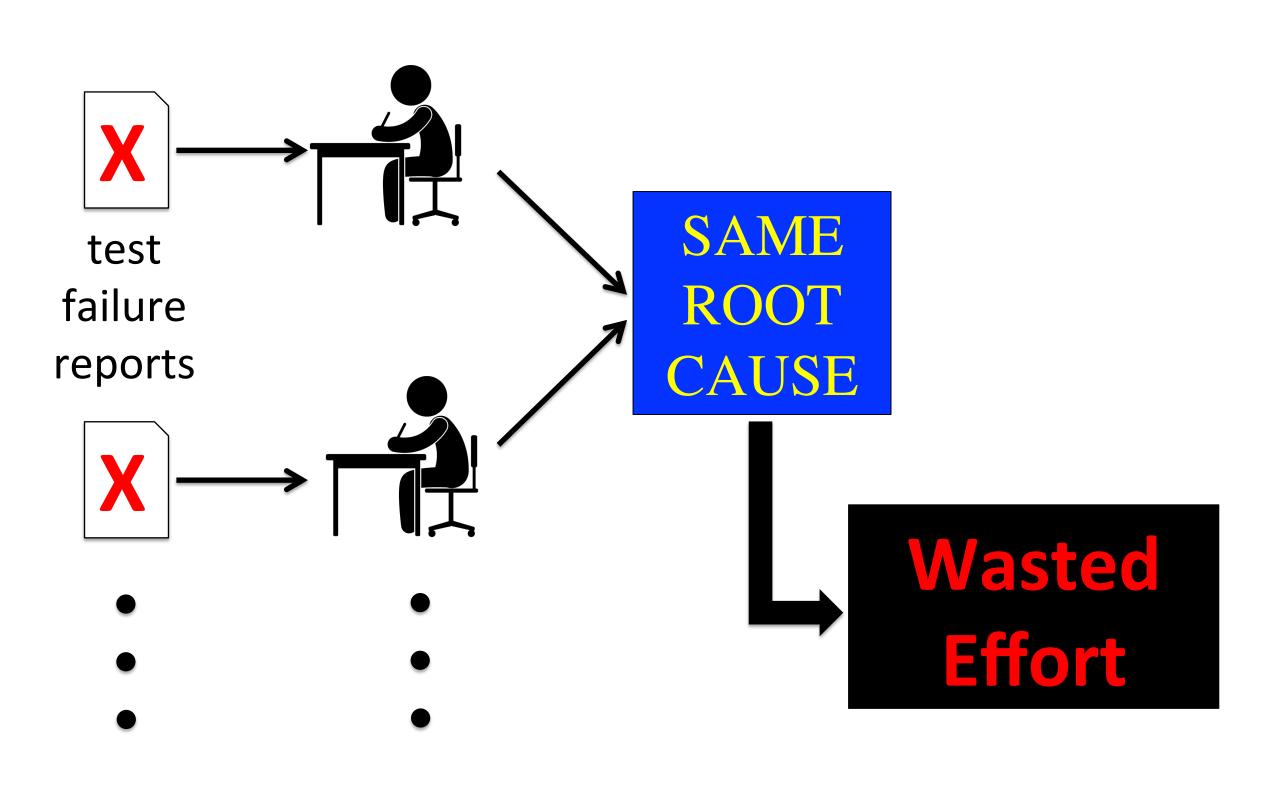
# Hardware Bug Triage Using Machine Learning

Rico Angell, Ben Oztalay, Noel Bhattacharyya and Andrew DeOrio



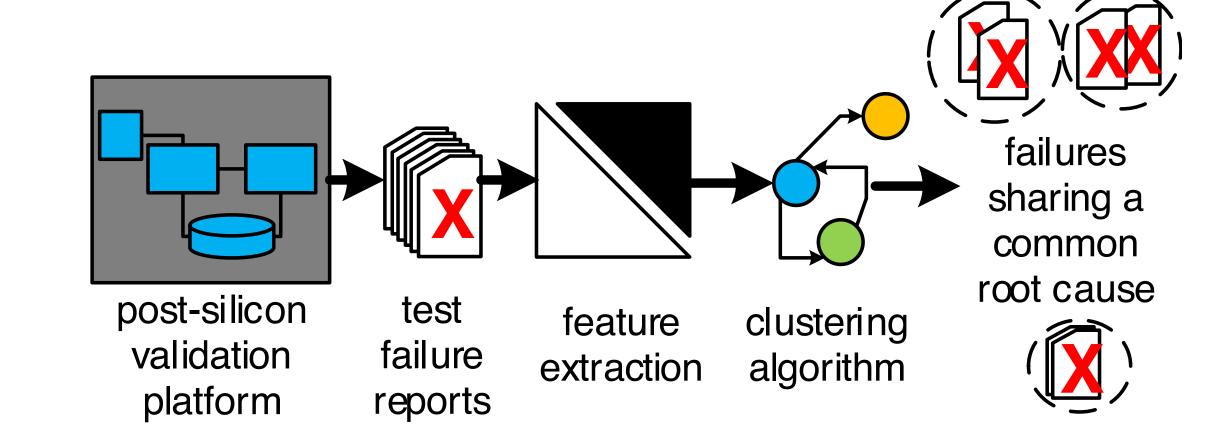
#### Problem

- Digital designs are continuing to become more complex and verification effort is increasingly burdened by post-silicon validation
- A bottleneck in the post-silicon validation process: Engineering resources are wasted debugging multiple test failures that are found to have been caused by the same root cause bug



## Hardware Bug Triage Algorithm

- Start with a database of failure reports that include values of some of the control signals in the design
- Select features from log files in order to reduce each log file to a point in Euclidean space (module specific control wires)
- Reduce each failure report in the database to a point in Euclidean space based on the selection of features
- Use k-means clustering on data points
- The result is groups of failure reports such that the failures in a fixed group has the same root cause bug

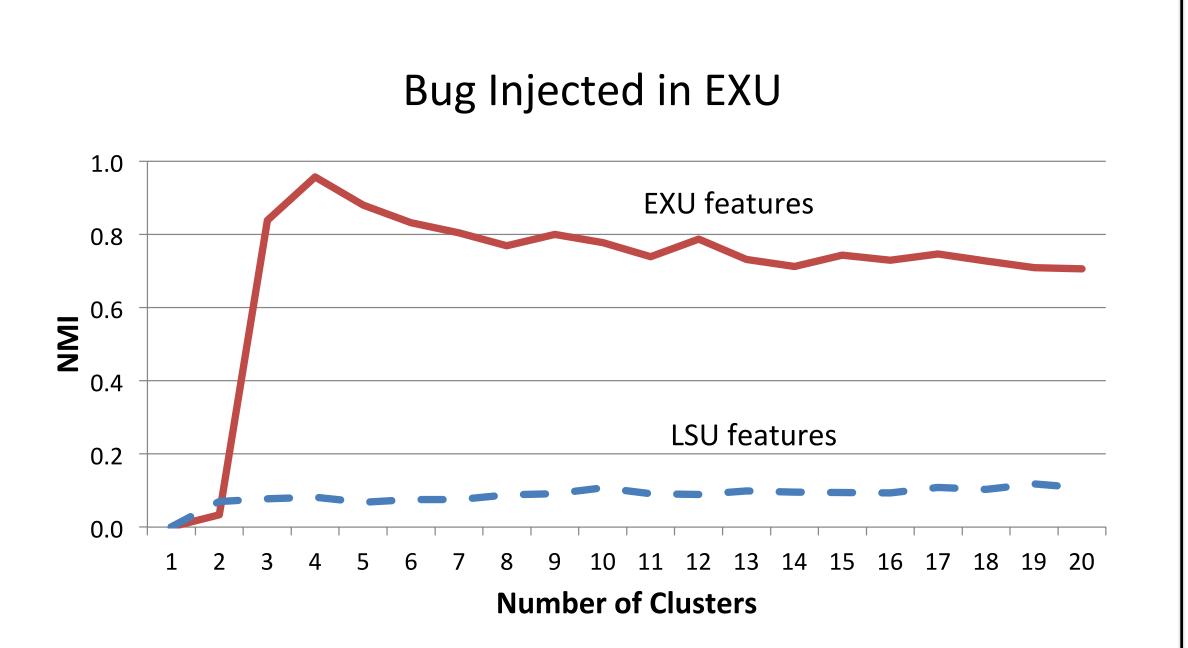


| Module | Description                               |
|--------|-------------------------------------------|
| EXU    | execution unit's register mgt. logic      |
| DEC    | decoder                                   |
| TLU    | trap logic unit                           |
| MMU    | memory management unit                    |
| PMU    | performance monitoring unit control logic |
| PKU    | thread pick unit                          |
| FGU    | floating point and graphics unit          |
| GKT    | gasket interface                          |
| LSU    | Load/store unit                           |
| IFU    | Instruction fetch unit                    |

Modules injected with post-silicon bugs. Each module of the industrial-sized OpenSPARC T2 contained 5 stuck-at bugs.

## Results

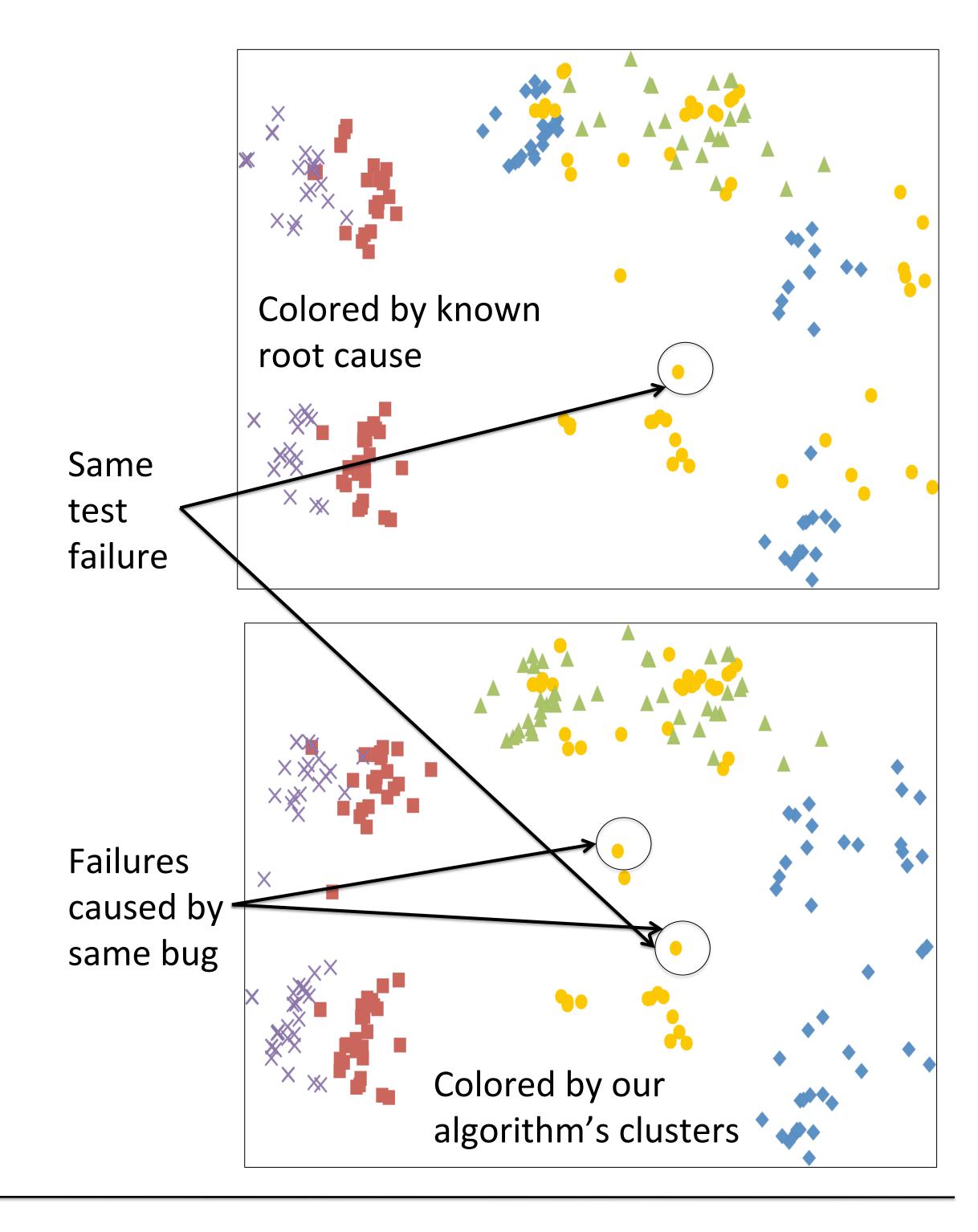
- Design bugs for submodules of OpenSPARC T2 using a hardware description language
- Run simulations that mimic the post-silicon validation testing process
- Each simulation dumps the values of all control signals in each module
- We use Normalized Mutaul Information (NMI) to analyze the quality of the clustering
- Higher NMI indicates more accurate clustering
- We accurately distilled 3,634 test failures into 50 groups



Effect of the number of clusters on quality of results using bugs injected in the execution unit (EXU) module.

| Features used by clustering |     |      |      |      |      |      |      |      |      |      |      |  |  |
|-----------------------------|-----|------|------|------|------|------|------|------|------|------|------|--|--|
| Bug Injection location      |     | EXU  | PKU  | DEC  | MMU  | TLU  | PMU  | IFU  | GKT  | FGU  | LSU  |  |  |
|                             | EXU | 0.88 | 0.09 | 0.13 | 0.07 | 0.06 | 0.04 | 0.07 | 0.03 | 0.01 | 0.07 |  |  |
|                             | PKU | 0.00 | 0.33 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |  |  |
|                             | DEC | 0.23 | 0.17 | 0.40 | 0.20 | 0.21 | 0.24 | 0.22 | 0.16 | 0.14 | 0.21 |  |  |
|                             | MMU | 0.43 | 0.54 | 0.44 | 0.83 | 0.48 | 0.43 | 0.48 | 0.39 | 0.38 | 0.43 |  |  |
|                             | TLU | 0.48 | 0.45 | 0.41 | 0.44 | 0.72 | 0.48 | 0.43 | 0.47 | 0.36 | 0.43 |  |  |
|                             | PMU | 0.45 | 0.49 | 0.44 | 0.47 | 0.46 | 0.69 | 0.43 | 0.44 | 0.38 | 0.44 |  |  |
|                             | IFU | 0.07 | 0.17 | 0.13 | 0.10 | 0.13 | 0.11 | 0.31 | 0.01 | 0.02 | 0.11 |  |  |
|                             | GKT | 0.40 | 0.38 | 0.36 | 0.41 | 0.40 | 0.37 | 0.46 | 0.80 | 0.32 | 0.36 |  |  |
|                             | FGU | 0.32 | 0.42 | 0.38 | 0.31 | 0.31 | 0.32 | 0.31 | 0.29 | 0.31 | 0.31 |  |  |
|                             | LSU | 0.50 | 0.58 | 0.50 | 0.52 | 0.49 | 0.57 | 0.52 | 0.46 | 0.47 | 0.50 |  |  |

Quality of clusters identified by our algorithm, expressed as NMI between our algorithm and a theoretical perfect clustering. The diagonal shows the modules where our algorithm correctly identified the root causes of the failures.



### Conclusions

Our algorithm:

- Increases debugging efficiency by identifying test failures that share a common root cause
- Tolerates inconsistent failures and noisy postsilicon chips
- Automatically clusters failures with limited postsilicon signal visibility and without a golden model Our results:
- Provide insights on applying machine learning to the dynamic signal activity in a complex digital design