US009411007B2

a2 United States Patent

Bertacco et al.

(10) Patent No.:

(45) Date of Patent:

US 9,411,007 B2
Aug. 9,2016

(54) SYSTEM AND METHOD FOR STATISTICAL

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58) Field of Classification Search

None

POST-SILICON VALIDATION

Applicant: THE REGENTS OF THE
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

Inventors:

Assignee:

Valeria Bertacco, Ann Arbor, MI (US);
Andrew DeOrio, Ann Arbor, M1 (US);
Daya Shanker Khudia, Ann Arbor, MI
us)

THE REGENTS OF THE

UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 505 days.

Appl. No.: 13/663,258

Filed: Oct. 29, 2012

Prior Publication Data

US 2015/0268293 Al Sep. 24, 2015

Int. Cl1.

GOIR 3126
GOIR 2926
GOIR 2728
GO6F 11/263
GOIR 31/3183
GO6F 11726
GOIR 31/3185
U.S. CL

CPC

(2014.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
............ GOIR 31/2601 (2013.01); GOIR 27/28
(2013.01); GOIR 29/26 (2013.01); GOIR
31/3183 (2013.01); GOIR 31/318544 (2013.01);
GOGF 11/261 (2013.01); GOG6F 11/263
(2013.01)

6,438,664 Bl 82002 McGrath et al.
6,701,477 B1* 3/2004 Segal .....cccccovviin 714/732
7,269,756 B2 9/2007 Baartmans et al.
7,461,311 B2* 12/2008 Harteretal. ................ 714/732
8,086,926 B2* 12/2011 Kato ........... .. 714/741
2009/0206868 Al* 82009 Laisneetal. ... ... 324/765
2010/0293422 Al* 11/2010 Huangetal. .............. 714/726
OTHER PUBLICATIONS

W. Li, et al., “Scalable Specification Mining for Verification and
Diagnosis,” Proceedings of the 47th design automation conference,
pp. 755-760. ACM, Jun. 13-18, 2010.*

F. Wang, et al, “Deterministic Diagnostic Pattern Generation
(DDPG) for Compound Defects,” IEEE International Test Confer-
ence, 2008, pp. 1-10.*

W. Navidi, “Principles of Statistics for Engineers and Scientists,”
McGraw Hill, Boston Massechusettes, 2010, pp. 268 272.*

(Continued)

Primary Examiner — Aniss Chad
Assistant Examiner — David M Rogers

(74) Attorney, Agent, or Firm — Marshall, Gerstein & Borun
LLP

(57) ABSTRACT

The system and method described herein relate to a bug
positioning system for post-silicon validation of a prototype
integrated circuit using statistical analysis. Specifically, the
bug positioning system samples output and intermediate sig-
nals from a prototype chip to generate signatures. Signatures
are grouped into passing and failing groups, modeled, and
compared to identify patterns of acceptable behavior and
unacceptable behavior and locate bugs in space and time.

20 Claims, 7 Drawing Sheets

600

1 -
Failing band
0.8 v
Passing band
[}
=2
$ 0.67
o 606
3 3
©
= R R R RIRLILLN
PR R R R AR
RS / S A e
7 //‘ww'ﬁmy
K2l <2
0.21
' 604 +2g
/ [
0 T T ‘
0 4 /' 2
608

Window



US 9,411,007 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

M. Grosso, et-al., “Exploiting Embedded FPGA in On-line Software-
based Test Strategies for Microprocessor Cores,” IEEE International
On-Line Testing Symposium, 2009, pp. 95-100.*

M. Neishaburi, et al., “Hierarchical Embedded Logic Analyzer for
Accurate Root-Cause Analysis,” 2011 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, 2011, pp. 120-128.*

Abramovici et al., “A Reconfigurable Design-for-Debug Infrastruc-
ture for SoCs,” in Proc. DAC, 2006.

Adiretal., “Threadmill: A Post-Silicon Exerciser for Multi-Threaded
Processors,” in Proc. DAC, 2011.

Dahlgren et al., “Latch Divergency in Micro-Processor Failure
Analysis,” in Proc. ITC, 2003.

De Paula et al., “Backspace: Formal Analysis for Post-Silicon
Debug,” in Proc. FMCAD, 2008.

DeOrio et al., “Post-Silicon Bug Diagnosis with Inconsistent Execu-
tions,” ICCAD, Nov. 7-9, 2011.

Donget al., “System-Level Cost Analysis and Design Exploration for
Three-Dimensional Integrated Circuits,” in Proc. ASPDAC, 2009.
Frohwerk, “Signature Analysis: A New Digital Field Service
Method,” Hewlett-Packard Journal, May 1977.

Gao et al., “A New Post-Silicon Debug Approach Based on Suspect
Window,” in Proc. 1/7°S, 2009.

Jha et al., “Localizing Transient Faults Using Dynamic Bayesian
Networks,” in Proc. HLDVT, 2009.

Keng et al., “Bounded Model Debugging,” IEEE Trans. CAD of ICs
and Systems, vol. 29, No. 11, 2010.

Li et al., “Scalable Specification Mining for Verification and Diag-
nosis,” in Proc. DAC, 2010.

Liblit, “Cooperative Bug Isolation,” Ph.D. dissertation, Berkeley,
CA, USA, 2004, aA13183833.

McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in Proc. VTS, 2009.

Narayanasamy et al., “BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging,” in Proc. ISCA,
2005.

Park et al,, “BLoG: Post-Silicon Bug Localization in Processors
using Bug Localization Graphs,” in Proc. DAC, 2010.

Quinton et al., “Programmable Logic Core Based Post-Silicon
Debug for SoCs,” in IEEE Silicon Debug and Diagnosis Workshop,
2007.

Safarpour et al., “Automated Design Debugging with Abstraction and
Refinement,” IEEE Trans. CAD of ICs and Systems, vol. 28, No. 10,
2009.

Sarangi et al., “CADRE: Cycle-Accurate Deterministic Replay for
Hardware Debugging,” in Proc. DSN, 2006.

Savir, “Syndrome-Testable Design of Combinational Circuits,” [EEE
Trans. Computers, vol. C-29, No. 6, 1980.

Wagner et al., “Reversi: Post-Silicon Validation System for Modem
Microprocessors,” in Proc. ICCD, 2008.

Whetsel, “An IEEE 1149.1 Based Logic/Signature Analyzer in a
Chip,” in Proc. ITC, 1991.

Yang et al., “Automated Data Analysis Solutions to Silicon Debug,”
in Proc. DATE, 2009.

Yang et al., “Expanding Trace Buffer Observation Window for In-
System Silicon Debug through Selective Capture,” in Proc. VLSI Test
Symposiwn, 2008.

* cited by examiner



U.S. Patent Aug. 9,2016 Sheet 1 of 7 US 9,411,007 B2

/100
155 106
| /
VALIDATION COMPUTER I
160 166 146
PROGRAM /
MEMORY
165
o ~
DATABASE 104
145 /
VALIDATION PLATFORM
162 [ »| 110
; - 1o 102 i} 114
PROCESSOR < ; ¥ PROTOTYPE CHIP I
- ™ ¥ WITHBPS F
164 T HARDWARE §
RAM BIIIIIIIIIIIIIIIIIIIIII
112

FIG. 1



U.S. Patent Aug. 9,2016 Sheet 2 of 7 US 9,411,007 B2

200

202~ DETERMINE WHICH SIGNALS TO OBSERVE
AND WHAT KIND OF SIGNATURES TO COLLECT

206~ ¢

WINDOW RUN ONE OR MORE POST-SILICON TESTS ON PROTOTYPE
LENGTH |—®{ CHIP AND LOG SIGNATURES DURING TEST WINDOW “
PARAMETER FOR TARGET SIGNALS

v

208— SEND SIGNATURES OFF-CHIP TO COMPUTER RUNNING
ANALYSIS SOFTWARE AND INCREMENT
WINDOW COUNTER

204~

TESTING COMPLETE? NO

212-§O0RT SIGNATURES INTO PASS GROUP AND THE FAIL GROUR
AND SORT EACH OF THE PASS GROUP AND FAIL GROUP
BY SIGNAL AND WINDOW

!

MAKE PASS MODEL USING PASS GROUP
PASS BAND = [lpass t k pass * O pass

v

MAKE FAIL MODEL USING FAIL GROUP
FAIL BAND = Uy £ kfzjt "0 faif

v

COMPARE PASS BAND TO FAIL BAND TO DETERMINE
BUG BAND

222~ ¢
220—] BUG BAND RANK SIGNALS ACCORDING TO MAGNITUDE OF BUG BAND

THRESHOLD —»| AND IDENTIFY SIGNALS WITH MAGNITUDE > BUG BAND
PARAMETER THRESHOLD PARAMETER AS BUGS

214

216

218

FIG. 2



U.S. Patent Aug. 9,2016 Sheet 3 of 7 US 9,411,007 B2

Distribution

——passing testcases
- - —failing testcases

| | | |
0 0.2 0.4 0.6 0.8 1
Signature value

FIG. 3A

. 7 N
— passing testcases 7N\
- ---failing testcases ! \

Distribution
\
/

L4 A
U
,/
4/ =’
[ T I |

I
0 0.2 0.4 0.6 0.8 1

Signature value

FIG. 3B



US 9,411,007 B2

Sheet 4 of 7

Aug. 9, 2016

U.S. Patent

¥ 'Old

@
@
o
— -
=z
A w
vlj_
! n
|
I

1s9] Japun ubisaq

_ [ I N J

[ I N J
14od Bngep ssece /o:\ +< _

ybnoayy YT Y) | 0%
seee |
/| duo-yo 9Ly _
142% ———
't I_ |||||||| 1 90Y eeo e
N3 \ _llllho ° <
Joisibol 1 YOV
NG\ o I\ < +< v
1874
Ly ~-Z0v
/No_.
00v




US 9,411,007 B2

Sheet S of 7

Aug. 9,2016

U.S. Patent

g "Old

. ¥0S . .
: Q/:o._mmc___mn_ : N

>
[}

[ 7 v - J—

Djeubis
B /Omom
7 ? ’ m__mcm_w — s|eubis

- 4905 /mom
vieubis

]
Y
3

sainjeubis %

3,
3,
3,
3,

.
SN

1
=1
<1
=1

N
NN
SN

SMOPUIM & & _ r <©mm\
/f SRR aWMrMy//

R IRIRRALLE D

.
[l
.

<

0 0.0
CURAXE
AR
fodees
%

3

X
’0
’0
’0
’Q
S
.‘
‘0
3
’0
%
bo%
X9
o
X3
.‘
2
X
oS,
o2
SRR
(%
s
o0
o3
’0
%
a%
%
25
'Q
55
e
64
53
e

oreotototetetotetesetotesese? 4
R SR
% e teisateseateted

S
%
X
&
&
%
'
&
"
%
'
%
5
X
2

RO
50
SRS

KR
!

pueq Bng SMOPUIM

\ 806

v¥iS
aE(

"N N N IN —
- \ ‘ vieubis
o ] g - 5 'L \voos
T N N S N m__ﬂa_m __ sieubis
A N N 9905 \
salnyeubis \ \ § N Sjeub 908
> > > N Dleubis

J \ N + & <

: dnoub buissed . - 0905

005 . . . :
\z05 \




US 9,411,007 B2

9 'Old
MOPUIA\

Sheet 6 of 7

Aug. 9,2016

U.S. Patent

y
\ / OC+ ¥09 \
QSRR R RIS AR
QR AR R RIS
X 0\ X \\

909

pueq Buissed P}

pueq Buljied

009

anjeA ainjeubig




US 9,411,007 B2

Sheet 7 of 7

Aug. 9, 2016

U.S. Patent

P38 NX3

OQUIOd NININ
0qUI0d NOW

oquio9 JegX

Ux} XOd

VS Wwie XOd
uxj NININ

|§

uxj 89

1099 JegX

[ vs b xod

0.2%
75

dOVHINV

7% \
38

JOVHIANY
P919 X4
P9R dl

1919 dM

VS N3N
vS di

VS X3

UX} PWy

N
\
NN
Q
\
K\ Vs syoeo
NN
NN\
N

uxj X3
uxj di

200

o o o (=)
<] N eo) <

~ A

pe10818p s|eubis Jo JaquunN

o

FIG. 7

o™
N
2,

~

19919 NX3
oquiod NN

0quod N
oquioo Jegyx

Ux} XOd

VS wie XOd

ux} NININ

uxj Mg
109J8 legX
VS 1ub XOd
JOVIINY

5,772

I A A

JOVHIANVY

1918 X4

P9 dl

1318 dM
VS W3

vS di

VS ayoeo

VS X3

UX} pwy
uxj X3
uxj di

25,000
20,000
15,000+
10,000

(s910A2) uonoeyep 0y uondalul Bng swy v

FIG. 8



US 9,411,007 B2

1
SYSTEM AND METHOD FOR STATISTICAL
POST-SILICON VALIDATION

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
HRO0011-07-3-0062 awarded by the Defense Advanced
Research Projects Agent. The government has certain rights
in the invention.

FIELD OF TECHNOLOGY

This applications relates generally to integrated circuit
testing and, more particularly, to post-silicon testing of pro-
totype integrated circuits.

BACKGROUND

Diagnosing and debugging failures in large, complex mod-
ern digital designs is a difficult task that spans the entirety of
the design process. Recently, the role of post-silicon valida-
tion has increased, particularly in the microprocessor design
industry, in light of the scaling problems of pre-silicon meth-
odologies and tight time-to-market development schedules.

Pre-silicon verification operates on an abstract design
model and has the advantage of being fully deterministic and
fully observable, but is limited by its slow speed and low fault
coverage. Failing testcases can be reliably reproduced to
diagnose functional bugs, which in turn manifest consis-
tently. By contrast, real silicon lacks observability, controlla-
bility, and deterministic repeatability. As a result, some tests
may not produce the same outcome over multiple executions,
due to the interaction of asynchronous clock domains and
varying environmental and electrical conditions. Bugs that
manifest inconsistently over repeated executions of a same
test are particularly difficult to diagnose. Furthermore, the
number of observable signals in post-silicon is extremely
limited, and transferring observed signal values off-chip is
time-consuming. During post-silicon validation, tests are
executed directly on silicon prototypes. A test failure can be
due to complex functional errors that escaped pre-silicon
verification, electrical failures at the circuit level, and even
manufacturing faults that escaped testing. The failed test must
be re-run by validation engineers on a post-silicon validation
hardware platform with minimal debug support. Post-silicon
failure diagnosis is notoriously difficult, especially when tests
do not fail consistently over multiple runs. The limited
observability and controllability characteristics of this envi-
ronment further exacerbate this challenge, making post-sili-
con diagnosis one of the most challenging tasks of the entire
validation effort.

In industry practice, the post-silicon validation process
begins when the first silicon prototypes become available.
These chips are then connected to specialized validation plat-
forms that facilitate running post-silicon tests, a mix of
directed and constrained-random workloads. Upon comple-
tion of each test, the output of the silicon prototype is checked
against an architectural simulator, or in some cases, self-
checked.

When a check fails (i.e., the semiconductor device has
failed the test), indicating that an error has occurred, the
debugging process begins, seeking to determine the root
cause of the failure. On-chip instrumentation can be used to
observe intermediate signals. Techniques such as scan chains,
on-chip logic analyzers, and flexible logging infrastructures
are configured to trace design signals (only a small number

10

15

20

25

30

35

40

45

50

55

60

65

2

can usually be observed) and periodically transfer data oft-
chip. Traces are then examined by validation engineers to
determine the root cause of the problem. This process may be
time-consuming and engineering intensive, and may be fur-
ther exacerbated by bugs with inconsistent outcomes. Addi-
tionally, off-chip data transfers are very slow, which further
hinders observability due to limited transfer time.

The debugging process of non-deterministic failures can
be aided by deterministic replay mechanisms. However, these
solutions perturb system execution which can prevent the bug
from manifesting, and often incur significant hardware and
performance overheads. In addition, in an effort to automate
the failure diagnosis process, methods based on formal veri-
fication techniques have been proposed. These solutions
require deterministic execution and a complete golden
(known-correct) model of the design for comparison. How-
ever, the fundamental scaling limitations of formal methods
preclude these techniques from handling industrial size
designs. Accordingly, there is a need for a scalable post-
silicon validation platform to localize inconsistent bugs,
minimize off-chip transfers, without a priori knowledge of
the design or the failure.

SUMMARY

The bug positioning system (“BPS”) leverages a statistical
approach to address the most challenging post-silicon bugs,
those that do not manifest consistently over multiple runs of a
same test, by localizing them in space (design region) and
time (of bug manifestation). The BPS leverages existing on-
chip trace buffers or a lightweight custom hardware compo-
nent to record a compact encoding of observed signal activity
over multiple runs of the same test. Some test runs may fail,
while others may pass, leading to different activity observa-
tions. In addition, observations may be affected by variations
introduced by the operating environment—both system-level
activity and environmental effects. Finally, a post-analysis
software algorithm leverages a statistical approach to discern
the time and location of the bug manifestation. Overall, the
BPS eases debugging in post-silicon validation by:

Localizing inconsistent bugs in time and space, often to the
exact problem signal, thus reducing the engineering effort to
root-cause and debug the most difficult failures. The BPS
targets a wide range of failures, from functional, to electrical,
to manufacturing defects that escaped testing.

Tolerating non-repeatable executions of the same test, a
characteristic of the post-silicon environment, and thus not
part of any mature pre-silicon methodology.

Providing a scalable solution with minimal engineering
effort, able to handle the complexity of full chip integration
typical of post-silicon validation, while minimizing off-chip
data transfer through the use of compact encodings of signal
activity.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures described below depict various aspects of the
system and methods disclosed herein. It should be understood
that each figure depicts an embodiment of a particular aspect
of the disclosed system and methods, and that each of the
figures is intended to accord with a possible embodiment of
thereof. Further, wherever possible, the following description
refers to the reference numerals included in the following
figures, in which features depicted in multiple figures are
designated with consistent reference numerals.

FIG. 1 illustrates a block diagram of a prototype chip, a
post-silicon validation platform, and a validation computer,



US 9,411,007 B2

3

on which an example bug positioning system and method
may operate in accordance with the described embodiments;

FIG. 2 depicts an example bug positioning method for
implementing the bug positioning system in accordance with
the described embodiments;

FIG. 3A depicts an example graph of passing and failing
groups of signature with a wide range of output.

FIG. 3B depicts an example graph of passing and failing
groups of signature with substantially distinct output ranges.

FIG. 4 illustrates a block diagram of an on-chip hardware
sensor implementation for measuring P(time@]1) in accor-
dance with the described embodiments;

FIG. 5 depicts a graphical representation of sorting a group
of'signatures and creating models in accordance the described
embodiments;

FIG. 6 depicts a graphical representation of a building a
model of acceptable behavior, a model of failed behavior, and
comparing the two models in accordance with the described
embodiments;

FIGS. 7 and 8 are diagrams of the results of testing per-
formed on example embodiments.

DETAILED DESCRIPTION

A bug positioning system (“BPS”) as herein described
diagnoses the time and location of functional, electrical, and
manufacturing bugs during post-silicon validation, in particu-
lar, those bugs that manifest through inconsistent test out-
comes. Inthese situations, the same post-silicon test may pass
for some of its executions and fail other times, due to asyn-
chronous events or electrical and environmental variations
on-chip.

To locate these difficult bugs, the BPS leverages a two-part
approach: logging compact observations of signal activity
with an on-chip hardware component, followed by an off-
chip software post-analysis. The compact size of observa-
tions produced by the hardware are essential for minimizing
expensive off-chip data transfers. These signal observations
are gathered and reduced to a compact encoding for a number
of'executions of the same test, some passing and some failing,
but usually all slightly different. Finally, the collected data is
analyzed by the BPS post-analysis software, leveraging a
statistical approach that is insensitive to the natural variations
over several executions, but it is capable of detecting the more
dramatic differences in signal activity typically caused by
bugs. The result is the localization of the bug through the
reporting of an approximate clock cycle and the set of signals
most closely related to the error.

FIG. 1 illustrates a block diagram of an example BPS 100.
The high-level architecture includes both hardware and soft-
ware applications, as well as various data communications
channels for communicating data between the various hard-
ware and software components. The BPS 100 includes a
prototype chip 102, a validation platform 104, and a valida-
tion computer 106. The prototype chip 102 may include one
or more input ports 110, one or more output ports 112, and/or
one or more power ports 114 coupling the prototype chip 102
to the validation platform 102. The prototype chip 102
includes on-chip instrumentation (e.g., scan chains, on-chip
logic analyzers, flexible logging infrastructures, etc.) to
observe intermediate signals, trace design signals, and peri-
odically transfer data off-chip, as discussed below. The vali-
dation platform 104 may provide power to the prototype chip
102, send information to and receive information from the
prototype chip 102, send signatures to the validation com-
puter 106 over link 108, and receive post-silicon tests from
the validation computer 106 over link 108.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The validation computer 106 may include one or more
computer processors adapted and configured to execute vari-
ous software applications and components of the BPS 100, in
addition to other software applications. The validation com-
puter 106 further includes a database 146. The database 146 is
adapted to store data related to the operation of the BPS 100.
Such data might include, for example, data collected by vali-
dation platform 104 pertaining to the BPS 100 and sent to the
validation computer 106 such as signatures or other kinds of
data. The validation computer 106 may access data stored in
the database 146 when executing various functions and tasks
associated with the operation of the BPS 100.

The validation computer 106 may have a controller 155
that is operatively connected to the database 146 via a link
156. It should be noted that, while not shown, additional
databases may be linked to the controller 155 in a known
manner. The controller 155 may include a program memory
160, a processor 162 (may be called a microcontroller or a
microprocessor), a random-access memory (RAM) 164, and
an input/output (I/O) circuit 166, all of which may be inter-
connected via an address/data bus 165. It should be appreci-
ated that although only one microprocessor 162 is shown, the
controller 155 may include multiple microprocessors 162.
Similarly, the memory of the controller 155 may include
multiple RAMs 164 and multiple program memories 160.
Although the I/O circuit 166 is shown as a single block, it
should be appreciated that the 1/O circuit 166 may include a
number of different types of /O circuits. The RAM(s) 164
and program memories 160 may be implemented as semicon-
ductor memories, magnetically readable memories, and/or
optically readable memories, for example. The controller 155
may also be operatively connected to the network 130 via a
link 135. The program memory 160 includes computer-read-
able instructions that are executable by the processor 162.
Such instructions, when executed, may cause the validation
computer 106 to implement the bug positioning method 200
discussed below.

FIG. 2 is a flow diagram depicting an example embodiment
of a bug positioning method 200 implemented by the BPS
100. Before post-silicon validation can be started using the
BPS 100, it must be determined which signals to observe as
test signals and which kind of signatures to collect (block
202). Signals available for observation are selected at design
time, and the most effective choices are typically control
signals. In complex chips, thousands of signals may be
observable. Signatures are compact encodings of observed
activity on a set of target signals, which are later used by the
BPS’ 100 post-analysis software to locate failures. Signatures
are recorded at regular intervals, called windows, and stored
in an on-chip buffer as discussed below. Windows can range
in length from hundreds to millions of cycles, and are later
used to determine the occurrence time of a bug. Simple sig-
natures can often be collected using existing debug infrastruc-
tures, such as on-chip logic analyzers, flexible event counters
or performance counters.

The signals available to the BPS 100 for observation may
play a role in its ability to accurately localize bugs. The scope
of signals available for observation during post-silicon vali-
dation may vary with the quality of its debug infrastructure
(e.g., how many intermediate signals from inside a prototype
chip are directly observable). When the signals involved in a
bug are monitored directly by the BPS 100, the BPS 100 may
be highly effective in identitying failures down to the exact
source signal. The BPS 100 may also be effective at indirectly
identifying failures in signals that are not directly monitored
by monitoring other signals (e.g., observing signals that are
proximate to other signals). However, when the indirectly



US 9,411,007 B2

5

observed signal is observed via a less proximate monitored
signal, the accuracy of the BPS 100 may be reduced as the
proximity to the indirectly observed signal decreases. This
may result in an increased number of signals detected, as well
as increased detection time. Thus, the BPS 100 is able to
identify bugs that originate either within or outside of its
observable signals, but the BPS 100 may only be able to
identify the exact signal when that signal is monitored.

It may be advantageous to restrict the number of signals
observed to reduce the computational time required to com-
plete testing. Indeed, it may not be necessary to collect sig-
natures for every signal in the design. The BPS 100 leverages
signals high in the module hierarchy, those most likely to be
available for observation in a post-silicon validation platform.
To further reduce the amount of data that must be transferred
off-chip, the BPS 100 may use two signal selection optimi-
zations: first, it may exclude data signals, often identified as
busses 64-bits wide or more for a 64-bit processor design.
Depending on hardware resources, signatures can be col-
lected all at once or in groups. If post-silicon debugging
hardware resources are scarce, then multiple executions of
the test can be leveraged to complete the signature collection,
even if those executions are not identical, since the BPS’ 100
post-analysis software is tolerant to variation. Being able to
leverage data from non-repeatable test executions, the BPS
100 enables a trade-off between area overhead and the time
required to gather signature data. With a small area budget,
the signatures for a set of signals can be gathered a few signals
ata time. Leveraging fast post-silicon execution, a test can be
run multiple times, recording signatures from a different sub-
set of signals with each run. Variation among different runs
averages out in BPS’ statistical approach, and thus does not
impact the diagnosis quality.

Additionally, before post-silicon validation can com-
mence, the types of signatures to collect is typically deter-
mined. An ideal signature is compact for dense storage and
fast transfer, and represents a high-level view of the observed
activity. Furthermore, the signature must exhibit a statistical
separation between passing and failing cases, as shown in
FIGS. 3A-B. In order to differentiate erroneous behavior
from correct behavior, the BPS 100 characterizes activity
using distributions of signatures. Signatures can be generated
by a variety of codes and counting schemes. However, many
traditional codes may exhibit a wide range of output and are
very susceptible to noise: small variations among executions
led to severe variations in the signature value, as shown in
FIG. 3A. FIG. 3A is an example graph of passing and failing
groups of signature with a wide range of output. As shown in
FIG. 3A, a graph of the distribution of failing signatures 302
substantially overlaps with a graph of the distribution of pass-
ing signatures 304. Thus, it may be difficult to distinguish
erroneous from correct behavior with these signatures, espe-
cially when noise is present.

Signatures may also be generated by counting schemes,
where the amplitude of changes in signal activity leads to
approximately proportional changes in signature values. The
result is a discernible difference in the distribution of signa-
tures for passing vs. failing testcases and less vulnerability to
noise as show in FIG. 3B. FIG. 3B is an example graph of
passing and failing groups of signature with substantially
distinct output ranges. As shown in FIG. 3B, a majority of the
graph of the distribution of failing signatures 306 does not
overlap with a graph of the distribution of passing signatures
308.

Signatures based on counting schemes include toggle
count, time at one and time at zero. A variation of time at one
may be used in conjunction by the BPS 100: the probability of

25

30

40

45

50

6

a signal being at one during a time interval (also referred to as
a “window”), P(time@]1). This signature is compact, simple,
and encodes notions of switching activity, as well as timing.
By contrast, toggle count expresses the logical activity of the
signal, but it does not provide any temporal information.
However, it will be understood that other signature generation
techniques may be used by the BPS 100 as long as the output
ranges of the passing and failing groups of signatures possess
the substantially distinct output range discussed above. For
example, signatures may be generated using techniques such
as hamming distance, cyclic redundancy check, or hashing
functions.

Referring again to FIG. 2, prior to commencing post-sili-
con validation testing, the BPS 100 may receive a window
length parameter (block 204). The window length parameter
may be adjustable by a user of the validation computer 106.
The window length is the time interval (in cycles) of signature
calculation, and affects the precision of the ability of BPS 100
to determine in time a bug occurred. The relationship between
window size and the duration of a bug may also affect how the
BPS 100 detects bugs. A bug’s duration comprises the per-
turbation in the source signal and the after-effects that may
spread to nearby connected logic. When the bug duration is
small relative to the window size, its effect on the signature
recorded for a window is proportionally small (bugband<20),
sometimes resulting in false negatives, depending on the bug
band threshold. The effect of short bug durations can be
counteracted by a smaller threshold, as well as by smaller
window sizes. As window sizes increased, the number of
cases where BPS detected the exact root signal may decrease,
despite being able to detect other signals related to the bug.
Increasing the window length increases the number of cycles
that must be inspected after BPS 100 reports the pass band
discussed below. However, large window lengths may have
the advantage of allowing longer periods of execution
between signature logging and thus may decrease the volume
of data that must be transferred off chip. Thus, the choice of
window size may be a trade-off between off-chip data transfer
times and the precision of bug localization timing.

Having selected which type of signatures to log and which
signals to observe (in addition to optionally receiving a win-
dow length parameter), the BPS 100 may begin testing (block
206). Post-silicon tests may be a mix of directed and con-
strained-random workloads. A test may be “passed” by the
prototype chip 102 if the actual output from the prototype
chip 102 matches up with an expected value of the test, and a
test may be “failed” by the prototype chip 102 if the output
from the prototype chip 102 does not match the expected
outcome. The expected value may come from an architectural
simulator and/or a self-check by the prototype chip 102 itself.
While the BPS 100 is running the post-silicon tests, the BPS
100 may also log signatures as discussed below in connection
to FIG. 4.

FIG. 4 illustrates a block diagram of an on-chip hardware
sensor implementation for measuring P(time@1) 400 in con-
nection with block 206. The prototype chip 102 under test
may contain the design under test 402 and the on-chip hard-
ware sensors 414. While the BPS 100 tests the design under
test 402, intermediate signals from the design under test 402
may be monitored using observable, test connections 404,
406, and 408 between the intermediate signals and the on-
chip hardware sensors 414. FIG. 4 illustrates three of such
connections 404, 406, and 408. Of course, many more test
connections (e.g., hundreds, thousands, tens of thousands,
etc.) may connect the design under test 402 to the on-chip
hardware sensors 414 as discussed above. The signals from
the design under test 402 may be connected to counters 410



US 9,411,007 B2

7

via muxes 416, allowing the selection of a subset of the
signals to be monitored. Because the embodiment described
in FIG. 4 measures P(time@ 1), signatures may be calculated
by simply counting (i.e., summing) the number of cycles
when a signal is at 1 and normalizing to the window length. It
may be advantageous to use nine bits of precision when
calculating P(time@]1), which may offer precision similar to
a window size of 512 cycles. Thus, the resulting probability
may be truncated and stored with fewer bits. The final result
is copied to a memory buffer 412 at the end of each window.
Referring again to FIG. 2 as well as FIG. 3, the contents of the
memory bufter 412 may be transmitted oft-chip via a port 414
at the end of each window (block 208). Alternatively or addi-
tionally, the contents of the memory buffer 412 may be trans-
mitted off-chip only when the memory buffer 412 is at or near
capacity, and/or at the conclusion of testing. In addition to
logging signatures and sending the signatures off-chip, BPS
100 may also increment a window counter (or another indi-
cator of time) such that the signal origin location for each
signature and the period of time in which the signature was
generated are known. If testing is not yet complete, the BPS
100 may loop back to block 206 and continue testing for
another window (block 210).

After on-line signature collection is completed, off-line
software analysis identifies a set of signals indicating where
the bug occurred and at what time. The BPS uses the signa-
tures from passing runs of the test to build a model of expected
behavior, and then determines when failing executions
diverge from the model, revealing a bug (blocks 212-222).

The BPS 100 software begins by partitioning a test’s sig-
natures into two groups: those where the test passed, and
those where the test failed (block 212). It will be understood
that the signatures in each group may be organized by window
and signal: for each window/signal combination, BPS 100
may consider multiple signature values, the result of multiple
executions of the test. The population size of passing and
failing groups may primarily affect false negative and false
positive rates. When the population of failing runs is small,
variations in the failing group may have greater impact on the
models discussed below. Thus, bugs may be triggered more
easily, resulting in increased false positives. Conversely,
when the number of passing testcases is small, variations may
impact the model of the passing population discussed below
by increasing the false negative rate. Accordingly, the BPS
100 may not use every signature generated in the modeling
steps discussed below. Instead, the BPS 100 may use equally-
sized groups of signatures where the prototype chip 102
passed the test and failed the test. Additionally, the BPS 100
may create a second group of signatures where the prototype
chip 102 passed the test to create the common mode rejection
filter discussed below. Further, the BPS 100 may discard
signatures that were not grouped or the BPS 100 may hold
such signatures in reserve for use in future modeling.

FIG. 5 is an illustration 500 to demonstrate blocks 212-
218, particularly how the BPS 100 sorts groups of signatures
and creates the models for signatures where the test passed
and for signatures where the test failed. As shown in the
graphical representation of the passing group 502 and the
failing group 504, the signatures are sorted into groups and
organized according to signal 506 and windows 508. Accord-
ingly, for example, the signatures from signalA taken during
window 1 in which the prototype chip 102 passed the test are
grouped together in sub-set 514A and so on. Referring again
to FIG. 2 as well as FIG. 4, passing signatures are used to
build a model of acceptable system behavior 510 for each
observed signal: the algorithm goes through all the signatures
related to one signal, building the model one window ata time

10

15

20

25

30

35

40

45

50

55

60

65

8

(block 214). The middle portion of FIG. 5 illustrates the
model of acceptable system behavior 510 built for signal A as
a light gray band. Representing the expected behavior as a
distribution of values enables the BPS 100 to tolerate varia-
tions in signature values since, as discussed above, post-
silicon validation is characterized by non-identical execu-
tions due to naturally occurring variations among distinct
executions.

FIG. 6 is an illustration 600 showing how distributions are
used to build a model of acceptable behavior at block 214,
build a model of failed behavior at block 216, and compare
the two models at block 218. The passing band 602 for one
signal is generated by computing the mean (u,,,) of the
passing signature values for each signal for each window,
surrounded by k,, ., standard deviations (0,,,,), wherek,, . is
a parameter. Thus the band representing the passing signa-
tures is bounded by W, Kk, . *0,.,. Setting k,,, =2, for
example, causes the BPS 100 to represent over 95% of uni-
formly distributed data points. However, it will be appreci-
ated that other values of k., may be used.

Next, the BPS 100 may add the failing group to the model,
again considering each signal in turn and building the model
window-by-window, to determine a failing band 604 (block
216). The failing group is plotted in FIG. 6 as a dark gray
failing band 604, for example. Similar to the passing band, the
failing band may be modeled as the mean surrounded by kg,
standard deviations (lg,;+kg,;*0p,;,). When the failing band
604 falls inside the passing band 602 as shown at point 606,
the corresponding signal’s behavior is deemed to be within an
acceptable range, indicating that a test failure has not yet
occurred or, possibly it is masked by noise. When the failing
band 604 diverges from the passing band 602 as shown at
window 608, we identify this as buggy behavior.

As an additional filtering step, a set of common mode
rejection signals may be leveraged by the BPS 100 to mitigate
the noise present in large designs. To generate this filter, the
process described in reference to blocks 214 and 216 may be
run with two passing groups of a same testcase, rather than a
passing and a failing group. The signals identified in this
process may be removed from a list of candidate bug signals.
This may help to minimize the number of false positives.

Using this band model, BPS determines when failing sig-
natures diverge from passing signatures (block 218). The
divergence amount is referred to as a bug band 610. Starting
at the beginning of a test execution, the algorithm may con-
sider each window in turn, calculating the bug band one signal
at a time. The bug band is zero if the failing band falls within
the passing band, otherwise it is the difference between the
two top (or bottom) edges. As an example, FIG. 6 shows the
model obtained and the bug band calculation for a signal in
the memory stage of a 5-stage pipelined processor at window
608.

Next, the BPS 100 may receive a bug band threshold (block
220), and the set of bug bands (one for each signal) may be
ranked and compared against a bug band threshold that varies
with the design (block 222). The bug band threshold is used to
determine which signals the BPS 100 detects, and also causes
the BPS 100 to stop looking for bugs. Changing this value
changes the BPS* 100 sensitivity to bugs and noise. In some
cases, the design perturbation caused by a bug can be ampli-
fied by neighboring logic over time: a higher bug band thresh-
old can cause the BPS 100 to detect these neighboring signals
after searching longer (more windows) for errors. The result
is often a reduction in the number of signals detected, since
few signals have a bug band that exceeds the threshold. How-
ever, this can also lead to signals that are less relevant to the
error, as well as longer detection times. On the other hand, a



US 9,411,007 B2

9

bug band threshold that is too small can result in prematurely
flagging irrelevant signals, halting the search for the bug.
Further, when the bug band threshold is high, the subtler
effects of bugs may be overlooked by the BPS 100, resulting
in more bugs being missed. In contrast, the number of false
negatives may increase as the threshold increases. A single
threshold value may be used for each design under test. Thus,
in practice, the proper bug band threshold may be determined
when running the first tests, and then reused for the rest.

If no bug band exceeds the threshold, BPS moves on to the
next window. When one or more bug bands exceed the thresh-
old, BPS notes the time (represented by the window) and the
signals involved, reporting them as the bug time and location.

Experimental Evaluation

In order to evaluate the effectiveness of BPS, we employed
it to find bugs on two microprocessor designs with a variety of
failures, including electrical, manufacturing and functional
bugs. Each processor ran a set of 10 distinct application
workloads. The designs are a 5-stage pipelined processor
implementing a subset of the Alpha ISA, comprising 4,901
lines of code and 4,494 signals (bits). After excluding data
signals, BPS was left with 525 signals for analysis. Our larger
industrial design, the OpenSPARC T2 system, has 1,289,156
lines of code and 10,323,008 signal bits. We simulated the
system in its single core version (cmp1), which consisted of a
SPARC core, cache, memory, and crossbar. BPS monitored
the control signals at the top level of the design for a total of
41,743 signal bits, representative of the signals that would
likely be available during post-silicon debugging of such a
large design. Both designs were instrumented to record sig-
natures during logic simulation; execution variations were
introduced with variable and random communication laten-
cies. BPS requires only these compact signatures and pass/
fail status of the test to operate.

TABLE I

5-stage pipeline bugs Description

ID fxn
EX fxn

functional bug in decode
Functional bug in execution unit

15

20

25

30

35

40

10
TABLE I-continued

5-stage pipeline bugs Description

Fwd fxn Functional bug in fwding logic
EX SA Stuck-at in execution
Cache SA Stuck-at in cache in proc ctrl
ID SA Stuck-at in decode
MEM SA Stuck-at in memory
WB elect Electrical error in writeback
ID elect Electrical error in decode
Ex elect Electrical error in execute
TABLE II
OpenSPARC T2 bugs Description
PCX gnt SA Stuck-at in PCX grant
XBar elect Electrical error in crossbar
BR fxn Functional bug in branch logic
MMU fxn Functional bug in mem ctrl
PCX atm SA Stuck-at in PCX atomic grant
PCX fxn Functional bug in PCX
XBar Combo Combined electrical errors in Xbar/PCX
MCU combo Combined electrical errors in mem/PCX
MMU combo Combined functional bugs in MMU/PCX
EXU elect Electrical error in execution unit

Tables I and II show the bugs introduced in 10 different
variants of the design, with one bug in each variant. The
failures included functional bugs (design errors), electrical
failures and manufacturing errors. Functional bugs were
modeled by modifying the design logic, and electrical failures
were simulated by temporary single bit-flips persisting for a
number of cycles. Manufacturing errors were modeled as
single bit stuck-at faults lasting for the duration of the test.
Each design variant executed several tests a number of times,
and a checker would determine if the final program output
was correct. The workloads used as test inputs for the two
processor designs included assembly language tests, as well
tests from a constrained-random generator. There were 10
tests for each design, ranging in size from about 20K cycles to
11M cycles. Each test was run 10 times for each bug, using 10
random seeds with varying impact on memory latency. Addi-
tionally, each test was run 10 times (with new random seeds)
without activating the bug to generate the passing group.

TABLE III

BPS signal localization Checkmarks (v') indicate that BPS identified the bug;

the exact root signal was located in cases marked with v/+. Each design includes two bugs

involving signals not monitored by BPS (light gray shading). In these cases, BPS could

identify the bug, but not the root signal. “n.b.” indicates that no bug manifested for every run

of the test; false negatives and false positives are marked with “f.p.” and “fin.”.

ID | EX |fwd | EX|cache| ID |MEM |WB | ID | EX
S-stage fxn | fxn |fxn | SA[ SA | SA | SA |elect |elect| elect
bubblesort [ v+ | V4| vV Vi [ Y| V| v+
combRec [ nb. | v 4 I Earsararse
fib Yilnb | Y 2R aararse
hanoi nb. [nb. | ¥ Y+ | v+ [ v+ ]| nb.
insert Yil|v+|lY Y+ | v+ | v+ ]| v+
knapsack [v | v +| Y Y+ | V+|vV+| v+
matmult v v+l v v+ [ V[ vV+ [+
merge yilv | v Y+ [ V+ | V+ | ¥+
quick vi|lv+|Y Vi | v+ | v+ ]| v+
saxpy vy v+| v+ F b | v+ [ v+ | ¥+




US 9,411,007 B2

11
TABLE IlI-continued

12

BPS signal localization Checkmarks (v) indicate that BPS identified the bug;
the exact root signal was located in cases marked with v/+. Each design includes two bugs
involving signals not monitored by BPS (light gray shading). In these cases, BPS could
identify the bug, but not the root signal. “n.b.” indicates that no bug manifested for every run
of the test; false negatives and false positives are marked with “f.p.” and “fin.”.

PCX PCX

gnt |XBar|BR|MMU]| atm |PCX| XBar | MCU | MMU | EXU
OpenSPARC| SA |elect[fxn SA | fxn [combo|combo [combo] elect
blimp rand | ¥+ fn. v+ | fn.
fip_addsub n.b. nb. | v+ | fp.
fp muldiv b, fp. v+ | fp.
isa? hagic nb v+ nb. | fn.
isad asr pr | nb v + v Y
isa3_window| n.b. fn. n.b. v
Idst_sync n.b. Vs 7+ [ oo,
mpgen_sme | n.b. v+ v+ v+
n2_lsu_asi n.b. v+ v+ | nb.
tlu_rand n.b. v+ v+ | v+

Table 11T shows the quality of BPS bug detection for the
S-stage pipeline and OpenSPARC T2 designs: eventually,
BPS was able to detect the occurrence of every bug. Often, the
exact root signal was detected, a few exceptions include
S-stage’s EX SA and cache SA, as well as OpenSPARC’s BR
fxn and MMU fxn, where the root bug signal was deep in the
design and not monitored by BPS (indicated by light gray
shading). In these situations, BPS was still able to identity
signals close to the bug location. In a few cases with the
OpenSPARC design, BPS did not find an injected bug, a false
negative. Finally, we observed false positives in two testcases,
instances where the system detected a bug before it was
injected: both were floating point testcases (f p_addsub and f
p_muldiv). Upon further investigation, we found the cause to
be three signals that exhibited noisy behavior, but were not
included in the common mode rejection filter. When these
three signals were added to the filter, the false positives were
correctly avoided, highlighting the effectiveness of rejecting
noisy signals.

Some bugs were easier to detect than others, for example
BPS was able to detect the exact bug root signal in 8 out of 10
testcases with the PCX atm SA bug, while a seemingly similar
bug, the PCX gnt SA, did not manifest in 9 out of 10 cases.
PCX atm SA had wider effects on the system, and thus mani-
fested more frequently and was easier to detect. By contrast,
the PCX gnt signal was not often used and thus the related bug
did not manifest as frequently.

The number of signals and the time between bug occur-
rence and bug detection are also a consideration in post-
silicon validation: it is easier to debug a small number of
signals that are close to the bug’s manifestation. FIG. 7 shows
the number of signals identified by BPS for the bugs in each
design. Each bar of FIG. 7 represents one bug, averaged over
all tests used in BPS, using a window length of 512 cycles. We
found that the number of signals is highly dependent on the
bug, with BPS detecting a single signal for some bugs, such as
S-stage’s MEM SA and OpenSPARC’s MCU combo. Other
bugs were more challenging, for example, with the 5-stage
pipeline’s bug WB elect, BPS detected 158 signals on aver-
age: this was due to very wide-spread effects of'this single bug
throughout the design. We also noted that this catastrophic
bug was caught by BPS very quickly, less than 750 cycles
after the bug’s manifestation. While BPS monitored 80x
more signals in the OpenSPARC experiments, the number of
detected signals increased by only 2x, on average. This dem-

25

30

40

45

55

onstrates BPS’ ability to narrow a large number of candidate
signals (nearly 42,000) down to a smaller pool amenable to
debugging.

The time to detect each bug is reported in FIG. 8, expressed
as the number of cycles between bug injection and detection.
Each bar of FIG. 8 represents one bug, averaged over all tests,
using a window length of 512 cycles. The error bars indicate
the error window in the BPS reporting, which corresponds to
the window length. The average detection time was worse for
the 5-stage pipeline; mostly due to three bugs: the EX SA and
cache SA stuck-at bugs were both inserted into data busses,
and thus could not be directly observed by BPS. The effects of
the bug required many cycles before observable control sig-
nals diverged. In the case of the ID functional bug, the effects
of the bug were masked for many cycles in the fib testcase as
shown in TABLE I1I, thus, the bug went undetected until later
in the program’s execution. In the OpenSPARC design, we
noted that most bugs were detected within about 750 cycles,
on average. Two bugs were an exception to this rule, both
involving the MMU, where bugs involving signals deep in the
design remained latent for a time before being detected.

Overall, the present techniques were successful in narrow-
ing down a very large search space (number of signals*test
length) to a small number of signals and cycles. Our experi-
ments show that BPS, for example, was able to correctly
reject over 99.999% of the candidate (location, time) pairs.
By contrast, Instruction Footprint Recording and Analysis
(IFRA) achieves 99.8% by this metric.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate opera-
tions, one or more of the individual operations may be per-
formed concurrently, and nothing requires that the operations
be performed in the order illustrated. Structures and function-
ality presented as separate components in example configu-
rations may be implemented as a combined structure or com-
ponent. Similarly, structures and functionality presented as a
single component may be implemented as separate compo-
nents. These and other variations, modifications, additions,
and improvements fall within the scope of the subject matter
herein.

Additionally, certain embodiments are described herein as
including logic or a number of routines, subroutines, appli-
cations, or instructions. These may constitute either software
(e.g., code embodied on a machine-readable medium) or



US 9,411,007 B2

13

hardware. In hardware, the routines, etc., are tangible units
capable of performing certain operations and may be config-
ured or arranged in a certain manner. In example embodi-
ments, one or more computer systems (e.g., a standalone,
client or server computer system) or one or more hardware
modules of a computer system (e.g., a processor or a group of
processors) may be configured by software (e.g., an applica-
tion or application portion) as a hardware module that oper-
ates to perform certain operations as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA) or
an application-specific integrated circuit (ASIC) to perform
certain operations. A hardware module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware module mechanically, in dedicated
and permanently configured circuitry, or in temporarily con-
figured circuitry (e.g., configured by software) may be driven
by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. Considering embodiments in which hard-
ware modules are temporarily configured (e.g., pro-
grammed), each of the hardware modules need not be con-
figured or instantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor configured using software, the general-
purpose processor may be configured as respective different
hardware modules at different times. Software may accord-
ingly configure a processor, for example, to constitute a par-
ticular hardware module at one instance of time and to con-
stitute a different hardware module at a different instance of
time.

Hardware modules can provide information to, and receive
information from, other hardware modules. Accordingly, the
described hardware modules may be regarded as being com-
municatively coupled. Where multiple of such hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) that connect the hardware modules. In
embodiments in which multiple hardware modules are con-
figured or instantiated at different times, communications
between such hardware modules may be achieved, for
example, through the storage and retrieval of information in
memory structures to which the multiple hardware modules
have access. For example, one hardware module may perform
an operation and store the output of that operation in a
memory device to which it is communicatively coupled. A
further hardware module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware modules may also initiate communications with
input or output devices, and can operate on a resource (e.g., a
collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that

25

40

45

55

14

operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods or routines described herein may be
at least partially processor-implemented. For example, at
least some of the operations of a method may be performed by
one or more processors or processor-implemented hardware
modules. The performance of certain of the operations may
be distributed among the one or more processors, not only
residing within a single machine, but deployed across a num-
ber of machines. In some example embodiments, the proces-
sor or processors may be located in a single location (e.g.,
within a home environment, an office environment or as a
server farm), while in other embodiments the processors may
be distributed across a number of locations.

The performance of certain of the operations may be dis-
tributed among the one or more processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the one or more
processors or processor-implemented modules may be
located in a single geographic location (e.g., within a home
environment, an office environment, or a server farm). In
other example embodiments, the one or more processors or
processor-implemented modules may be distributed across a
number of geographic locations.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a com-
puter) that manipulates or transforms data represented as
physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or a combination thereof), registers, or other
machine components that receive, store, transmit, or display
information.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expression
“coupled” and “connected” along with their derivatives. For
example, some embodiments may be described using the
term “coupled” to indicate that two or more elements are in
direct physical or electrical contact. The term “coupled,”
however, may also mean that two or more elements are not in
direct contact with each other, but yet still co-operate or
interact with each other. The embodiments are not limited in
this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both
A and B are true (or present).

In addition, use of the “a” or “an” are employed to describe
elements and components of the embodiments herein. This is
done merely for convenience and to give a general sense of the

2 <



US 9,411,007 B2

15

description. This description, and the claims that follow,
should be read to include one or at least one and the singular
also includes the plural unless it is obvious that it is meant
otherwise.

This detailed description is to be construed as exemplary
only and does not describe every possible embodiment, as
describing every possible embodiment would be impractical,
if not impossible. One could implement numerous alternate
embodiments, using either current technology or technology
developed after the filing date of this application.

What is claimed:

1. A post-silicon validation method for debugging a semi-
conductor device with one or more observable connections,
the method comprising:

testing, by one or more processors, the semiconductor

device over a plurality of time intervals, wherein the
testing is associated with an expected test outcome and
causes the semiconductor device to produce an actual
output and one or more signals, wherein each signal is
associated with an observable connection;

logging, by one or more processors, a group of signatures

for the signals;

dividing, by one or more processors, the group of signa-

tures into a passing group having passing group signa-
ture values if the actual output conforms with the
expected test outcome or a failing group having failing
group signature values if the actual output does not
conform with the expected test outcome;

determining, by one or more processors, a model of signal

behavior for each of the one or more signals by (i)
calculating a passing group mean signature value from
each of the passing group signature values tested during
the same time interval to form a passing group band
centered about the mean passing group signature values
over each of the plurality of time intervals and bounded
by a threshold passing range, and (ii) calculating a fail-
ing group mean signature value from each of the failing
group signature values tested during the same time inter-
val to form a failing group band centered about the mean
failing group signature values over each of the plurality
of time intervals and bounded by a threshold failing
range; and

identifying, by one or more processors, (i) the signals asso-

ciated with a divergence of the failing group band from
the passing group band, wherein the divergence occurs
when any portion of the failing group band threshold
failing range is no longer within the threshold passing
range, and (ii) a time interval from among the plurality of
time intervals associated with the divergence.

2. The method of claim 1, further comprising:

locating a bug in the semiconductor device using the diver-

gence and the one or more observable connections to
which the signals associated with the divergence are
associated.

3. The method of claim 1, wherein:

the act of testing includes repeating one or more testing

operations during each of the plurality of time intervals,
and

the act of logging includes logging a signature for each

signal for each time interval from among the plurality of
time intervals,

the method further comprising:

receiving a window length parameter specifying a number

of'cycles in each time interval from among the plurality
of time intervals.

10

20

25

35

40

45

55

60

16

4. The method of claim 1, wherein the passing group and
the failing group of signature values have statistically signifi-
cant separation.

5. The method of claim 1, wherein the group of signatures
is based on one or more of a signal toggle counting scheme, a
signal time at one counting scheme, a signal at zero counting
scheme, a cyclic redundancy check, hamming distance, or a
hashing function.

6. The method of claim 1, wherein the threshold passing
range comprises:

the mean passing group signature values plus or minus a

multiple of the standard deviation, and

wherein the threshold failing range comprises:

the mean failing group signature values plus or minus a

multiple of the standard deviation.

7. The method of claim 1, wherein identifying the signals
associated with the divergence comprises:

identifying a bug band characterized by the magnitude of

the divergence between the passing group band and the
failing group band for each signal; and

ranking the signals according to the magnitude of the bug

band of each signal.

8. The method of claim 7, further comprising:

receiving a bug band threshold parameter, and

wherein identifying the signals associated with the diver-

gence further comprises:

comparing the bug band of each signal to the bug band

threshold parameter; and

identifying signals for which the magnitude of the bug

band exceeds the bug band threshold parameter.

9. The method of claim 1, wherein dividing the group of
signatures includes setting aside a portion of the passing
group into a training group, and

wherein the model of signal behavior includes the passing

group band, a training group band, and the failing group
band, the method further comprising:

identifying, as noisy signals, one or more signals where the

passing group band diverges from the training group
band; and

revising the model of signal behavior by excluding from

the model one or more signatures associated with the
noisy signals.

10. A post-silicon validation system for debugging a semi-
conductor device coupled to the system, the system compris-
ing:

a processor for executing computer-readable instructions;

a memory storing computer-readable instructions that

when executed by the processor cause the post-silicon
validation system to:

test the semiconductor device over a plurality of time inter-

vals, wherein the test is associated with an expected test

outcome and causes the semiconductor device to pro-

duce an actual output and one or more signals, wherein

each signal is associated with an observable connection;
log a group of signatures for the signals;

divide the group of signatures into a passing group having

passing group signature values if the actual output con-
forms with the expected test outcome or a failing group
having failing group signature values if the actual output
does not conform with the expected test outcome;
determine a model of signal behavior for each of the one or
more signals by (i) calculating a passing group mean
signature value from each of the passing group signature
values tested during the same time interval to form a
passing group band centered about the mean passing
group signature values over each of the plurality of time
intervals and bounded by a threshold passing range, and



US 9,411,007 B2

17

(i1) calculating a failing group mean signature value
from each of the failing group signature values tested
during the same time interval to form a failing group
band centered about the mean failing group signature
values over each of the plurality of time intervals and
bounded by a threshold failing range; and

identifying (i) the signals associated with a divergence of

the failing group band from the passing group band,
wherein the divergence occurs when any portion of the
failing group band threshold failing range is no longer
within the threshold passing range, and (ii) a time inter-
val from among the plurality of time intervals associated
with the divergence.

11. The post-silicon validation system of claim 10, wherein
the memory further includes instructions that when executed
by the processor cause the post-silicon validation system to
locate a bug in the semiconductor device using the divergence
and the one or more observable connections to which the
signals associated with the divergence are associated.

12. The post-silicon validation system of claim 10, wherein
the instructions that when executed by the processor cause the
post-silicon validation system to test the semiconductor
device include instructions to repeat one or more testing
operations during each of the plurality of time intervals,

wherein the instructions that when executed by the proces-

sor cause the post-silicon validation system to log a
group of signatures include instructions to log a signa-
ture for each signal for each time interval from among
the plurality of time intervals, and

wherein the memory further includes instructions that

when executed by the processor cause the post-silicon
validation system to receive a window length parameter
specifying a number of cycles in each time interval from
among the plurality of time intervals.

13. The post-silicon validation system of claim 10, wherein
the passing group and the failing group of signature values
have a statistically significant separation.

14. The post-silicon validation system of claim 10, wherein
the group of signatures is based on one or more of a signal
toggle counting scheme, a signal time at one counting
scheme, a signal time at zero counting scheme, a cyclic redun-
dancy check, hamming distance, or a hashing function.

15. The post-silicon validation system of claim 10, wherein
the threshold passing range comprises the mean passing
group signature values plus or minus a multiple of the stan-
dard deviation, and

wherein the threshold failing range comprises the mean

failing group signature values plus or minus a multiple
of the standard deviation.

16. The post-silicon validation system of claim 10, wherein
the instructions that when executed by the processor cause the
post-silicon validation system to identify the signals associ-
ated with the divergence includes instructions to:

identify a bug band characterized by the magnitude of the

divergence between the passing group band and the fail-
ing group band for each signal; and

rank the signals according to the magnitude of the bug band

of'each signal.

17. The post-silicon validation system of claim 16, wherein
the memory further includes instructions that when executed
by the processor cause the post-silicon validation system to:

receive a bug band threshold parameter, and

wherein the computer-readable instructions that when

executed by the processor cause the post-silicon valida-

18

tion system to identify the signals associated with the
divergence further include computer-readable instruc-
tions to:
compare the bug band of each signal to the bug band
5 threshold parameter; and

identify signals for which the magnitude of the bug band

exceeds the bug band threshold parameter.

18. The post-silicon validation system of claim 10, wherein
the computer-readable instructions that when executed by the
processor cause the post-silicon validation system to divide
the group of signatures include instructions to set aside a
portion of the passing group into a training group,

wherein the model of signal behavior includes the passing

group band, a training group band, and the failing group
band, and

wherein the memory further includes instructions that

when executed by the processor cause the post-silicon
validation system to:

identify as noisy signals one or more signals where the

passing group band diverges from the training group
band; and

revise the model of signal behavior by excluding from the

model one or more signatures associated with the noisy
signals.
19. A non-transitory, computer-readable medium having
55 computer-executable instructions for debugging a semicon-
ductor device comprising instructions that when executed by
a post-silicon validation system cause the system to:
test the semiconductor device over a plurality of time inter-
vals, wherein the test is associated with an expected test
outcome and causes the semiconductor device to pro-
duce an actual output and one or more signals, wherein
each signal is associated with an observable connection;
log a group of signatures for the signals;
divide the group of signatures into a passing group having
passing group signature values if the actual output con-
forms with the expected test outcome or a failing group
having failing group signature values if the actual output
does not conform with the expected test outcome;

determine a model of signal behavior for each of the one or
more signals by (i) calculating a passing group mean
signature value from each of the passing group signature
values tested during the same time interval to form a
passing group band centered about the mean passing
group signature values over each of the plurality of time
intervals and bounded by a threshold passing range, and
(i1) calculating a failing group mean signature value
from each of the failing group signature values tested
during the same time interval to form a failing group
band centered about the mean failing group signature
values over each of the plurality of time intervals and
bounded by a threshold failing range; and

identify (i) the signals associated with a divergence of the

failing group band from the passing group band, wherein
the divergence occurs when any portion of the failing
group band threshold failing range is no longer within
the threshold passing range, and (ii) a time interval from
among the plurality of time intervals associated with the
divergence.

20. The non-transitory, computer-readable medium of
claim 19, further storing instructions that when executed by
the post-silicon validation system cause the system to locate
a bug in the semiconductor device using the divergence and
the one or more observable connections to which the signals
associated with the divergence are associated.

15

20

40

45

50

55

60

#* #* #* #* #*



