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Techniques for simulating operation of a connectivity level 
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example, to simulate logic elements expressed through a 
netlist description. The techniques utilize a host processor 
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integrated circuit design for e?icient simulation on a parallel 
processor, more particularly a SIMD processor. The descrip 
tion may be segmented into cluster groups, for example 
macro-gates, formed of logic elements, Where the cluster 
groups are sized for parallel simulation on the parallel pro 
cessor. Simulation may occur in an oblivious as well as event 

driven manner, depending on the implementation. 
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GATE-LEVEL LOGIC SIMULATOR USING 
MULTIPLE PROCESSOR ARCHITECTURES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application claims the bene?t of US. Provi 
sional Application No. 61/326,212, entitled “Gate-Level 
Logic Simulator Using Multiprocessor Architectures,” ?led 
on Apr. 20, 2010, which is hereby incorporated by reference 
herein in its entirety. 

STATEMENT OF GOVERNMENT INTEREST 

This invention was made with government support under 
Contract No. HR0011-07-3-0002 awarded by Defense 
Advanced Research Projects Agency (DARPA). The United 
States Government has certain rights in this invention. 

FIELD OF THE INVENTION 

This disclosure generally relates to simulation of inte 
grated circuits for validation and, more particularly, to oblivi 
ous and event-based techniques for simulating integrated cir 
cuit descriptions in multiple processor architectures. 

BACKGROUND 

Logic simulation is a central aspect of the integrated circuit 
(IC) development process and serves as the primary tool for 
verifying a wide range of aspects in a design. Foremost 
among these aspects is the correctness of a design’s func 
tional behavior, both as a behavioral description of the sys 
tem, as well as a structural (gate-level) description. Most 
industry design ?ows invest the largest fraction of their time 
and resources precisely on this task, in an attempt to provide 
the best possible guarantee that the system satis?es its origi 
nal functional speci?cation. Often large server farms com 
prising thousands of machines are employed for months at a 
time to execute billions of cycles of simulation. Much of this 
time is consumed in simulation of gate-level netlists, which 
involves large netlists at a fairly low-level description, com 
prising many components that must be simulated. Overall the 
simulation and veri?cation of an integrated circuit design is 
one of the most time consuming tasks in the entire develop 
ment process; and the performance limitations of logic simu 
lators are one its main reasons. The consequences are poor 

design coverage, delayed product releases and bugs that 
escape into silicon. 

Logic simulation entails evaluating the response of an IC 
design over time when subjected to a set of input stimuli, 
typically selected by the designer to be representative of 
practical use situations. For most designs (synchronous), the 
response of the logic simulation is computed once for each 
cycle of simulated execution. Modern logic simulator imple 
mentations read in a design description, then “compile” the 
description to produce machine code emulating the same 
functionality as the design’s primitives. Simulation ?nds 
application in many aspects of a design development process, 
including functional validation, power and timing estimation 
and checking of equivalence among different circuit repre 
sentation. Gate-level netlists must be simulated for most of 
these applications. 

Particularly problematic for logic simulators, however, is 
that simulation of structural netlists is a notoriously time 
consuming process, yet essential to determine that if a syn 
thesized design matches the initial design speci?cations and 
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2 
behavioral description. As circuit designs increase in size and 
features offered, they increase in complexity. As a result, 
there is an increasing need for improved performance by logic 
simulators for IC design. 

SUMMARY OF THE INVENTION 

The present application describes techniques for logic 
simulation of integrated circuit (IC) designs, using techniques 
that selectively partition and optimize descriptions of the IC 
design for more ef?cient simulation. The partitioning may be 
applied to netlist descriptions of an IC design and optimized 
for operation on an external processor. Once the netlist has 
been partitioned and optimized, it may be simulated either in 
an oblivious manner or in an event-driven manner. For the 

former, the simulation may proceed by computing the output 
values of logic component after logic component until the 
entire IC design is simulated. For the latter, the simulation 
may be performed by computing the output values only of 
those logic components, or groups of logic components for 
which certain event-based triggers have occurred (for 
instance a change in the input values), so that most of those 
components, whose output cannot experience a change in 
value, do not contribute to the computation time of simula 
tion. 
The logic simulator may be executed using a host processor 

and a general SIMD class processor. In some examples, the 
logic simulator is executed using a host processor and a 
general purpose graphics processor unit (GP-GPU) device. 
The logic simulator is able to leverage massive parallelism in 
suitable processor con?gurations to achieve large perfor 
mance improvements over even the fastest modern commer 
cial logic simulators. 

In some examples, the logic simulator is a gate-level con 
current simulator that partitions a netlist, register transfer 
level (RTL), or other connectivity-based description of an IC, 
optimizes that description, and then maps it to a processor for 
simulation. In some examples, the mapping process includes 
clustering and gate balancing processes, which are optimized 
for the simulation processor. 

In some examples, the logic simulator is optimized for 
integrated circuits with large structural netlists. By leveraging 
the parallelism offered by various types of processor archi 
tectures, inparticular GP-GPUs, the simulator is able to lever 
age netlist clustering and balancing algorithms tuned for the 
target architecture. 

In some examples, the logic simulator functions as an 
event-driven simulator so that only a fraction of a netlist’s 
gates are simulated each cycle. In such examples, the logic 
simulator is to have minimal overhead for run-time event 
scheduling, as this is an intrinsically sequential process, while 
the simulator still needs to maintain a massively parallel 
computation environment most of the time. Thus, in some 
examples, the logic simulator is a hybrid simulator where 
clusters of gates (called macro-gates) are simulated in an 
oblivious fashion, while the scheduling of individual cluster 
groups is organized in an event-driven fashion. 

In an embodiment a method for logic simulation of a con 
nectivity level description of an integrated circuit, where the 
connectivity level description comprises a plurality of logic 
elements, comprises: in a ?rst processor, clustering logic 
elements into cluster groups each comprising at least one of 
the plurality of logic elements, where the cluster groups are 
sized such that, during a simulation cycle, each cluster group 
is capable of being simulated on a different processorblock of 
a second processor, wherein the processing units of the sec 
ond processor are capable of simultaneous operation; and in 
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the second processor, simultaneously simulating a plurality 
of the cluster groups each being simulated on a different one 
of the processing units. 

In some such examples, the connectivity level description 
is a netlist and the logic elements are logic gates within the 
netlist. 

Furthermore, some of these examples further comprise 
separating the cluster groups into one of a plurality of layers, 
from a lowest level layer to a highest level layer. 

In some examples, each cluster group is de?ned by a gap 
height, which is the number of logic levels in a longest logic 
chain within the cluster group, and a lid width, which is the 
number of logical output values provided by the cluster group 
after the simulation cycle. Some of these examples further 
comprise adjusting the respective gap height and lid width for 
each cluster group such that the cluster group is capable of 
simulation on one of the processing units. 

In another embodiment, a logic simulator for simulating a 
connectivity level description of an integrated circuit, where 
the connectivity level description comprises a plurality of 
logic elements, comprises: a parallel processor having a plu 
rality processing units capable of simultaneous execution by 
the parallel processor; and a host processor con?gured to, 
cluster logic elements into cluster groups each cluster group 
comprising at least one of the plurality of logic elements, 
where the cluster groups are sized such that each cluster group 
is capable of being simulated on one of the processing units of 
the parallel processor, and map each cluster group for simu 
lation by one of the plurality of processing units. 

In some examples, the parallel processor comprises a 
SIMD, general purpose graphics processing unit (GP-GPU) 
architecture, or compute uni?ed device architecture (CUDA) 
architecture. In some of these examples, the parallel proces 
sor comprises a plurality of cores each having a plurality of 
the processing units. In some examples, the parallel processor 
comprises a device memory connected to each of the plurality 
of cores and a shared memory, wherein the shared memory is 
con?gured for simultaneous access by each of the processing 
units within one of the cores, during a processing cycle. 

BRIEF DESCRIPTION OF THE DRAWINGS 

For a more complete understanding of the disclosure, ref 
erence should be made to the following detailed description 
and accompanying drawing ?gures, in which like reference 
numerals identify like elements in the ?gures, and in which: 

FIG. 1 illustrates a con?guration for a logic simulator in 
accordance with one example of the instant application, and 
showing a host processor and a parallel processor; 

FIG. 2 illustrates an example implementation of the paral 
lel processor of FIG. 1; 

FIG. 3 is a gate-level illustration of clustering on a portion 
of netlist as part of a logic simulation performed by the host 
processor of FIG. 1 to form cluster groups, e.g., macro-gates; 

FIG. 4 is a ?ow diagram of a logic simulation process in 
accordance with an example; 

FIG. 5 is an illustration of an extracted combination portion 
of a netlist in accordance with an example; 

FIG. 6 is a ?ow diagram of clustering as performed in the 
process of FIG. 4 in accordance with an example implemen 
tation; 

FIGS. 7A and 7B illustrate macro-gates formed by cluster 
ing operations based on logic sharing (FIG. 7A) and activity 
pro?le (FIG. 7B), in accordance with an example; 

FIGS. 8A and 8B illustrate an example balancing of cluster 
groups in accordance with an example; 
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4 
FIG. 9 illustrates an example simulation of the macro-gate 

for the sample netlist of FIG. 5; 
FIG. 10 is an illustration of an example event-driven simu 

lation for an entire circuit design description, as may be 
executed by the parallel processor of FIG. 1; and 

FIG. 11 is a ?ow diagram of an example event-driven 
simulation in accordance with an example. 

DETAILED DESCRIPTION 

The present application describes techniques for logic 
simulation of integrated circuit (IC) designs, using partition 
ing and optimization techniques that may be initiated under 
different conditions, including from event-based triggers. 
The logic simulators may be executed on general SIMD class 
processors. In some examples, however, the logic simulator is 
executed on a general purpose graphics processing unit (GP 
GPU), for example, that allows software applications to run 
parallel processes across different functional pipelines. More 
speci?cally, in some examples a particular class of GP-GPU 
architectures are used, namely a compute uni?ed device 
architecture (CUDA), which is a parallel computing architec 
ture provided by NVIDIA Corporation, of Santa Clara, Calif., 
in various processors. These processor con?gurations are 
provided by example, not limitation. In each of these proces 
sor types as well as other applicable architectures, the logic 
simulator may leverage massive parallelism to achieve large 
performance improvements in IC circuit simulation and test 
ing. In some examples, the logic simulator is optimized for 
integrated circuits with large structural netlists. By leveraging 
the parallelism offered by SIMD, GP-GPUs, CUDAs, etc., a 
logic simulator is capable of applying a netlist balancing 
process tuned for the target architecture. 

In some examples, the logic simulator may be imple 
mented as a gate-level concurrent simulator having a design 
compilation process that partitions a netlist, register transfer 
level (RTL), or other connectivity-based description of an IC. 
The simulator may optimize that netlist, etc., and then map 
gates thereof to the processor architecture. To achieve 
improvements in performance, the simulator clusters the 
gates for simulation and balances these clusters for simula 
tion in a parallel processing environment. Thus, in some 
examples, the particular clustering and gate balancing is opti 
mized for more ef?cient utilization depending on the proces 
sor architecture. 

In some examples, the logic simulator may be imple 
mented as an oblivious simulator that evaluates each gate 
during each simulation cycle. In other examples, the logic 
simulator is an event-driven simulator that only evaluates a 
gate in response to particular events, such as if a change 
occurs at a gate’s input nets. Oblivious simulators can offer 
very simple scheduling, static data structures and better data 
locality. While event-driven simulators rely upon a dynamic 
analysis of which gates must be scheduled for re-evaluation. 

In some event-driven designs, the logic simulator is con 
?gured such that only a fraction of a netlist’s gates are simu 
lated each cycle. The logic simulator may, for example, be 
designed to use minimal overhead for run-time event sched 
uling, as this is an intrinsically sequential process, while the 
simulator still needs to maintain a massively parallel compu 
tation environment mo st of the time. The clustering and bal 
ancing, therefore, may be hybridized with an event trigger 
based solution. For example, the logic simulator may cluster 
gates (e.g., into macro-gates) that are simulated in an oblivi 
ous fashion, but the scheduling of individual cluster groups is 
organized in an event-driven manner. 
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FIG. 1 is a high level illustration of a computing environ 
ment 100 for executing a logic simulator of an IC design. In 
some examples, a ?rst processor 102 is a stand-alone proces 
sor capable of executing sequential code operations for the 
simulator and that works together with another stand-alone 
processor, a SIMD processing unit 104. In an example, the 
?rst processor 102 is implemented as a physically separate 
processing unit, e.g., a general-purpose central processing 
unit (CPU), while the SIMD unit 104 is implemented as 
another processing unit in the form of a general-purpose 
graphics processing unit (GP-GPU). In other examples, the 
processor 102 and the SIMD unit 104 re?ect different pro 
cessors within the same processing unit. For example, both 
102 and 104 may be implemented in a single, multiple pro 
cessor architecture, that performs clustering and balancing 
and mapping in one embedded processor thereof for simula 
tion in other embedded processors thereof. In some of these 
examples, the units 102 and 104 are the same SIMD proces 
sor. 

The host processor 102 and the SIMD unit 104 may be 
connected via a direct memory access (DMA) 103, which is 
provided by way of illustration, as any suitable wired or 
wireless communication channel between the processors may 
be used. In an implementation, computationally-intensive, 
parallel code operations of the simulator 100 are o?loaded to 
the processing unit 1 04 for execution. Typically, the processor 
102 functions as a host processor and is a single core proces 
sor or a multi-core processor with only a few cores. In the 
illustrated example, the processor 102 has four cores 106. The 
SIMD unit 104 in contrast is to have many cores 108, many 
more than the host processor 102. These cores may be hard 
ware or software based. In some examples, they each re?ect a 
different processor executing a dedicated thread execution 
block; where in some of these examples, the cores are distrib 
uted over different processors. As used herein, “core” refers 
to a grouping of processing units. A SIMD processor for 
example may comprise multiple cores, each comprising mul 
tiple processing units, each processing unit capable of execut 
ing a different thread and in parallel. 

The processor 102 is able to map code onto these cores 108 
for parallel execution. Twenty four cores 108 are shown, by 
way of example (though not all are labeled with a reference 
number). In most examples, the SIMD unit 104 will have 
much larger numbers of cores that may be segmented into 
different processors. Example SIMD processors may have 
80, 96, 192, 240, or 320 cores; although, the processors are 
not limited in the number of cores. Each core functions as a 

processor block. By way of example, not limitation, these 
cores may be implemented with 16 bit, 64 bit or 128 bit 
architectures; further, in some examples they may each 
include dedicated ?oating point processors. The logic simu 
lator is able to take advantage of any number of cores on the 
SIMD unit 104. Thus to allow for a massive parallel execution 
of netlist simulation, the SIMD unit 104 is not limited to a 
particular number of cores. 

FIG. 2 illustrates a particular example of the SIMD unit 
104 as a GP-GPU 200. The GP-GPU 200 includes a limited 

shared memory space for parallel processes running on the 
processor 200, as well as additional components designed to 
optimize the execution of graphic-processor speci?c memory 
(e. g., texture memory). Examples of the GP-GPU 200 are the 
CUDA processors available from NVIDIA Corporation of 
Santa Clara, Calif. In any event, the GP-GPU 200 is able to 
operate as a co-processor capable of executing many threads 
in parallel. In some examples, logical simulation code is 
compiled by the host processor 102 to a proprietary instruc 
tion set and the resulting program, called a kernel, is executed 
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6 
on the GP-GPU 200, with each parallel thread running the 
same kernel code on distinct data blocks. 

The GP-GPU processor 200 includes a plurality of cores 
202, each having processing units 204 delineated in hard 
ware. The processing units 204 can execute multiple threads 
concurrently, e.g., up to 512 or more simultaneous threads at 
the same time. In some examples, each core 202 executes 
blocks of threads, all running the identical kernel code. As a 
part of the GP-GPU architecture, a fast, shared memory 206 
is available to each core 202, and more particularly to each 
processing unit 204 of that core 202. In some examples, this 
shared memory 206 is accessible within 1 clock cycle. A 
device memory 208 is also provided on the GP-GPU 200, and 
would typically be sized between 256 MB to 2 GB depending 
on the application; although larger memories may be used. 
The device memory 208 is accessible by all the cores 202, but 
with a clock with a latency typically larger than that of the 
shared memory, for example, a latency of 300 to 400 clock 
cycles. This latency may be masked by time-interleaving 
thread execution within a core; for example, while a group of 
threads is executing on local data, others are suspended, wait 
ing for their data to be transferred from the device memory. In 
the illustrated example, all execution takes place on the SIMD 
unit 104 (or the GP-GPU 200), while the host processor 100 
serves only to invoke the beginning execution of a thread 
batch and waits for completion of one or more cycles of netlist 
simulation. 

FIG. 3 is a gate-level illustration of a macro-gate clustering 
operation 300 as performed by a logic simulator in accor 
dance with an example. The operation 300 may be imple 
mented via both the host processor 100 and the SIMD unit 
104, e.g., the GP-GPU 200. A series of gates 302 (only some 
of labeled) form a netlist of an IC design. The operation 300 
clusters these gates into different macro-gates 304a-f This 
clustering may be implemented as part of an oblivious simu 
lation process of the logic simulator. A series of primary 
inputs and register outputs 306 are coupled to the gates, 
resulting in a series of primary outputs and register inputs 308 
during a simulation cycle. 

In some examples, the operation 300 may have a hybrid 
nature in which the logic simulator not only applies an oblivi 
ous simulation approach to clustering (e.g., to simulate every 
logic gate in the design at every simulation cycle), but also an 
event-driven approach that limits the number of cluster 
groups being simulated at any given time. Thus, while the 
oblivious simulation for clustering has the advantage of uni 
form control ?ow; to prevent super?uous computation of 
gates whose inputs did not change, the event-driven simula 
tion can determine which subset of the gates should be simu 
lated each cycle, e.g., by only simulating those gates whose 
input values have changed. 

Three factors may guide the process of macro-gate forma 
tion, as shown in FIG. 3. (i) For macro-gates that are used in 
an event-driven simulation at a coarse granularity (compared 
to individual gates), the time required to simulate a certain 
macro-gate should be substantially larger than the overhead 
to decide which macro-gate to activate. (ii) The microproces 
sors in the GPU communicate through slower device 
memory: and as such the cores are able to execute indepen 
dent of each other. This is assured if the macro-gates that are 
simulated in parallel can be simulated independently of each 
other. Thus the macro-gate formulation process may achieve 
this goal by duplicating small portions of logic among the 
macro-gates, thereby eliminating the need for communica 
tion. (iii) Cyclic dependencies between macro-gates may be 
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avoided in order to simulate each macro-gate at most once per 
cycle, implying that the netlist can be levelized at the granu 
larity of macro-gates as well. 

In the illustrated example, the clustering operation 300 
partitions the macro-gates into layers 310-314, each layer 
encompassing a ?xed number of netlist levels. The macro 
gates 304 may then be de?ned by selecting a set of nets at the 
output boundary of a layer and then including the cone of 
in?uence extending from those output nets backward to the 
layer’s input netsithe tapering shape is that of a trapezoid. 
Three layers 310-314 are shown in the illustrated example, 
each layering having two levels of gate logic. However, any 
number of layers and levels, larger or smaller, may be used. 
The number of levels within each layer is termed the gap 
height and corresponds to the height of the macro-gate, i.e., 
the number of logic levels in the longest logic chain within a 
macro-gate. 

In the operation 300, some logic gates have been assigned 
to more than one macro-gate. Logic gate 316, for example, 
has been duplicated into two macro-gates, 304e and 304], for 
computation of respective output nets. 

There are several possible policies for selecting the nets 
whose cones of in?uence will be clustered by the process 300 
into a single macro-gate. To minimize duplication, for 
example, the logic simulator can attempt to cluster those nets 
whose cones of in?uence have a maximum number of gates in 
common. The number of output nets used to generate each 
macro-gate is a variable parameter, termed the lid. In some 
examples, the logic simulator executing the process 300 
exempli?ed in FIG. 3 may select the value for the lid param 
eter so that the number of logic gates in all macro-gates 
304a-304f is approximately the same. 

FIG. 4 illustrates a process 400 implemented by a logic 
simulator running on the host processor 100 and SIMD UNIT 
104 to form macro-gates as illustrated in FIG. 3. In an 
embodiment, at a block 402, the host processor 100 synthe 
sizes a register transfer level (RTL) description of an IC 
design, such as the netlist. For example, the host processor 
100 performs a compilation, where the CPU 100 receives a 
gate-level netlist as input, compiles the netlist and maps the 
netlist into a SIMD unit 104, or in this example to the GP 
GPU 200. 

Next, the host processor 100 extracts the combinational 
logic elements (e.g., AND, OR, NOT, XOR, etc.) from the 
netlist at block 403 for the purpose of setting up an initial 
netlist to be mapped for simulation. At block 404, the host 
processor 100 then partitions the netlist into cluster groups, 
e.g., macro-gates such as 304, which are logic blocks appro 
priately sized to ?t within the constraints of the SIMD archi 
tecture, e.g., with the constraints of a GP-GPU or CUDA 
architecture. The block 404, for example, may prepare pre 
liminary (or rough) cluster groupings based on size estimates 
quickly computed on the ?y. At block 406, the CPU 100 then 
balances these preliminary cluster groupings through an opti 
mization process, restructuring cluster groups to improve 
compute e?iciency during simulation. The block 404, for 
example, may perform a SIMD-independent clustering of 
netlist gates; whereas the block 406 may perform a SIMD 
processor speci?c optimization of the generated cluster 
groups to form balanced macro-gates that simulate ef?ciently 
on the SIMD unit 104, e.g., the GP-GPU 200. In some 
examples, the block 406 balances the clusters to maximize 
e?iciency, although maximization is not required. Finally, all 
the required data structures are compiled into the SIMD ker 
nel and transferred to the SIMD device. The optimized 
macro-gates partitioned design is then simulated at block 408. 
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8 
The block 402 may be implemented through any number of 

synthesis techniques. The process 400 generally uses a gate 
level netlist as the input, where this input is either a synthe 
sized version of a design under veri?cation, or a behavioral 
description to which a synthesis step is applied. Such synthe 
sis may or may not be optimized for time, power, area, or any 
other metric. 

In operation, the block 403 may extract the combinational 
portion of the gate-level netlist and map it to the GP-GPU 
200, creating data structures to represent the gates, as well as 
their input and outputs. An example illustration of an 
extracted combination portion of a netlist is shown in FIG. 5. 
A combinational portion of a netlist topology 500 contains a 
plurality of logic gates 502, having plurality of corresponding 
inputs 504 from a lower level region and a plurality of outputs 
506 to a higher level region. These re?ect the structures 
required for simulation of the portion 500. The block 404 may 
establish a value matrix 508 which stores the intermediate net 
values for simulation of the portion 500. In the illustrated 
example, there is a one-to-one correspondence between a row 
of intermediate values and the various levels of logic on the 
netlist 500. As a thread is executing during simulation, the 
GP-GPU 200 may be able to store and retrieve intermediate 
net values using the local shared memory 206. In the illus 
trated example, each net of the matrix 508 requires 2 bits of 
storage in a 4-valued simulator, where all these values may be 
stored in the faster shared memory 206. The shared memory 
206 may also store gate-type truth tables 509 consulted for the 
evaluation of each gate. 

All other data structures associated with the simulation 
may reside in the device memory 208. That is, in the illus 
trated example, input buffer values 510 may be stored in the 
device memory 208, along with output buffer values 512 of 
the entire netlist simulation. The netlist topology information 
may be stored there as well. Thus, data such as the netlist 
topology information that is required often may be stored in 
the device memory 208. However, in the example described, 
data to be shared among threads is stored locally. 

FIG. 6 illustrates an example clustering process 600 that 
may be executed by the block 404 of FIG. 4 and by the host 
processor 100. First a block 602 determines what type of 
partitioning approach is to be applied to the netlist, such as 
cone partitioning illustrated in this example. While an 
example fanout-cone partitioning is described, it is under 
stood that other types of partitioning may be used, including 
mini-cut partitioning, fanin-cone partitioning, random clus 
tering, etc. Block 604 may separate the netlist into layers and 
then into preliminary clusters of gates, in this example cones, 
where each cluster group after completion is to be formed into 
one or more macro- gates that are each executed on a different 

thread block (i.e., the cores 204) of the GP-GPU 200. Some 
GP-GPU architectures, such as CUDA architectures, do not 
allow information transfer among thread blocks within a 
simulation cycle; therefore all thread blocks are to execute 
independently. In other examples, this need not be the case. 
The block 602 may be implemented to minimize redundant 
computation of gates, maintain data structure organization, 
and maximize data locality. Thus, the cluster groups may be 
self-contained and not require communication with other 
cluster groups within a simulation cycle, which are features of 
cone partitioning. 

Generally speaking, for cone partitioning, the netlist is 
viewed as a set of logic cones, one for each of the netlist’s 
outputs. The block 604 transmits preliminary partition data to 
a block 606, where each identi?ed cone by block 604 includes 
all the gates that contribute to the evaluation of the cone 
output. The block 606 analyzes these cones and assigns them 
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to macro-gates (i.e., cluster groups). The process 600, for 
example, may operate one macro-gate at a time, as illustrated, 
or may de?ne multiple macro-gates at once. 
Due to the lack of inter-cluster communication capability, 

each macro-gate is to include one or more cones of logic; and 
each cone is fully contained within a macro-gate. As a result, 
once a macro-gate has been completely simulated by the 
process 400, one or more output values have been computed 
and can be stored directly into an output buffer vector. In 
forming the cones into macro-gates, the block 606 may pro 
duce cone overlap, which necessarily requires that some gates 
are duplicated, because they belong to multiple cones. The 
incidence of this extra computation is small in practice. In 
execution, the block 606 may assign one cone of logic to the 
cluster group from block 604, and add additional cones to this 
cluster group until memory resources have been exhausted. 
Various criteria for adding cones may be used, such as the 
maximal number of overlapping gates, where, for example, a 
second logic cone is selected so that it is the cone that overlaps 
the most with the ?rst cone. In other words, the block 604 may 
create all the cones of logic per the partitioning approach, e.g., 
by taking each output wire from a layer and ?nding all the 
gates that contribute to compute the value of that wire. The 
block 606 then is able to pack together several of these cones 
to make a macro-gate. How many cones may be chosen is 
based on how much shared memory (which is fast to access) 
is available on the platform. One way to ?t more cones into a 
macro-gate is to assign cones with a large number of gates in 
common. For instance, if coneA is comprised of 20 gates, and 
cone B is comprised of 25 gates, and cones A and B have 15 
gates in common, then the block 606 could assign these two 
cones to the same macro-gate and generated a macro-gate 
comprising 20+25—15:30 gates, a reduction of 15 gates from 
the potential 45. 

The block 606 determines macro-gate siZing. To do this, 
two macro-gate parameters are considered: the gap and the 
lid, which collectively control the granularity at which an 
event-driven mechanism operates. The block 606 may deter 
mine gap and lid values for the macro-gates by evaluating a 
range of candidate <gap,lid> value pairs. For each candidate 
pair, the block 606 may assess several metrics: number of 
macro-gates, number of monitored nets, size of macro-gates, 
and/ or activation rate. The activation rate may be obtained by 
a mock-up of the simulation on a micro testbench, for 
example. Once the candidate gap, lid pairs have been deter 
mined, the block 606 may then select the locally optimal 
values for the gap and lid pair. 

The processes 400 and 600 may be written in C, C++, or 
other suitable programming language. 

The boundaries for the range of gap values considered may 
be derived from the number of monitored nets generated, e. g., 
considering only gap values for which no more than 50% of 
the total nets are monitored. In practice, small gap values tend 
to generate many monitored nets, while large gap values 
trigger high activation rates. For determination of the lid 
value, the block 606 may bound the analysis by estimating 
how many macro-gates will be created at each layer, striving 
to run all the macro-gates concurrently. Such determination 
may be based on the number of cores (e.g., 202) on the 
particular GPU architecture being used. For a CUDA archi 
tecture that includes 14 microprocessors and a CUDA sched 
uler that allows at most three thread blocks in concurrent 
execution on the same core, the block 606 may thus consider 
lid values that generate no more than 14x3:42 macro-gates 
per layer. 

In other examples, the clustering of cones used to form 
macro-gates may be based on an activity pro?le. Any macro 
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10 
gate containing a frequently activated logic gate will result in 
the entire macro-gate being simulated. As such, the block 606 
may seek to consolidate logic cones with frequently activated 
logic gates into the same macro-gate. FIGS. 7A and 7B show 
an example of clustering based on estimated activity pro?le, 
e.g., activation rates, where the shading of a cone indicates its 
activation frequency. 

FIG. 7A shows two macro-gates 702 and 704 each with 
corresponding cones 706/708 and 710/712, respectively, 
where cones 706 and 712 are shaded to indicate a higher 
activity cone while cones 708 and 710 are lower activity 
cones. The block 606 may cluster the cones by degree of logic 
sharing, as shown in FIG. 7A, as discussed above. The result, 
in this example, is that two higher activity cones 706 and 712 
are clustered with the lower activity cones 708 and 710, 
resulting in both macro-gates 702 and 704 having high acti 
vation frequencies. In other examples, the block 606 may 
cluster based on the activation rates (e.g., activation fre 
quency), such that the high activity cones 706 and 712 are 
placed in the same macro-gate 714 (FIG. 7B), while the lower 
activity cones 708 and 710 are placed in the other macro-gate 
716. The result is frequently activated macro- gates with other 
macro-gates that are rarely activated. This may or may not 
result in a higher degree of gate duplication as shown by the 
lesser overlap of the cones; yet in some examples, this trade 
off is justi?ed by the signi?cant reduction in the total number 
of macro-gate simulations that are to be performed. 

Pro?ling may be used to estimate activity pro?les, for 
example, ?rst simulating a micro-testbench (10,000 cycles 
long) on a segmented circuit using the default clustering 
policy. During this simulation, the activation rates of each 
logic cone in each layer may be aggregated. The activation 
frequency of a cone is de?ned as the maximum of the activa 
tion frequency of all of its input wires, because that cone will 
need to be simulated if any of the input nets undergoes a value 
change. However, the input nets which form the base of the 
cone are part of monitored nets. Hence, the activation fre 
quency of all cones can be computed by recording the acti 
vation frequency of the monitored nets. Once these are com 
puted, the segmentation process is performed again, but cones 
are added to macro- gates based on activation frequency rather 
than simply by logic sharing. 
The block 606 determines the value of gap and lid, but 

these do not necessarily have to be constant during an entire 
clustering process. In fact, from an activity stand point, the 
gap parameter may vary, for example, with lower level gates 
being the most frequently active. To address this, an annihi 
lation ratio of a logic cone may be de?ned as the ratio of the 
activation frequency at the apex of the cone and the maximum 
of the activation frequencies of the wires at the base of the 
cone. In an example, the block 606 reaches the ideal gap value 
when the number of logic levels in a cone results in a suf? 
ciently low value of this annihilation ratio for all the cones in 
a layer. In fact, the number of levels needed may vary from 
cone to cone, such that the block 606 can locally vary values 
of a gap, with a macro-gate being composed of a few cones 
reaching the desired value of annihilation ratio, within the 
same number of levels, and the lid being a byproduct thereof. 
For example, the gap value may vary such that within a 
macro-gate different gap heights are present, instead of the 
purely trapezoidal shape in the example of FIG. 3. Across the 
lid, the lower gap heights may be formed within the macro 
gate. 

In FIG. 6, block 608 determines if additional cluster groups 
are to be formed; and, if so, control is returned to block 604. 
If not, the clustering process is completed when all gates have 
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been mapped to a set of cluster groups, preferably by mini 
mizing logic overlap while satisfying the constraints of 
shared memory resources. 

An example data?ow chart illustrating example steps, in 
pseudocode form, is provided below. 

clustering (netlist){ 
sort(outputicones) 
for each (outputicone) { 

new cluster = outputicone; 

while (size(cluster) < MAX SIZE) do { 
cluster += max overlap( 

output cones, cluster); 
} append (cluster, clusters); 

return clusters; 

Returning to FIG. 4, the block 406 performs balancing on 
the macro-gates provided by process 500. This balancing may 
seek to minimize the critical execution path of thread blocks 
(macro-gates) on the GP-GPU 200. For example, the block 
406 may consider each de?ned macro-gate individually and 
optimize the scheduling of each gate simulation so that the 
number of logic levels is minimized. The simulation latency 
of a single cycle is limited by the macro-gate with the most 
logic levels, since each additional level requires another 
access to the slower device memory. Considering the number 
of logics levels (gap) and the number of concurrent threads 
simulating distinct gates (lid), the block 406 balances these 
within the constraints of the SIMD UNIT 104 architecture. 
With the GP-GPU 200 it is desired to have a maximum of 256 
concurrent threads. Although more or fewer concurrent 
threads may be executed depending on the processor archi 
tecture. 

The cluster balancing of block 406 may reshape the natural 
triangular macro -gates to a rectangular shape with a 256-wide 
base. Macro-gates tend to be triangular in visual depiction, 
because they are a collection of cones of logic, which are 
usually triangular where a wide set of inputs computes one 
output through several stages of gates. An example clustering 
operation is illustrated in FIGS. 8A and 8B. The original 
macro-gate has a base width of3,l60 gates and a height of 67 
levels of logic, where most of the deeper levels require sig 
ni?cantly less than 3,000 threads. In SIMD-based processors, 
including GP-GPU and CUDA, simulation on the macro -gate 
wouldrequired 3, 160 simultaneous threads at Level 0, and the 
same number of occupied threads until all 67 levels of simu 
lated code has been completed, even though after each suc 
cessive logic level fewer threads will be functions. The block 
406 reshapes the macro-gate execution scenario into a more 
ef?cient rectangular shape scenario with a base width of 256 
gates, i.e., 256 simultaneous threads that are used consistently 
through all logic levels. In the illustrated example, the bal 
anced macro-gate executes over a larger cluster height (81 
versus 67) than would have occurred prior to balancing. But 
the tradeoff results in substantially larger ef?ciency of opera 
tion, as fewer gates are required to simulate the macro-gate 
(256 versus 3160). 
An example data?ow chart illustrating example steps, in 

pseudocode form, is provided below. 

balanceicluster( ) { 
for each level in height 

for each column in width 

balancedicluster?evel] [column] = 
select_gate( ) 

m 
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12 
-continued 

} 

return balancedicluster 

} 
select_gate() { 

sort gates in cluster by height 
for each gate in cluster { 

if not assigneditoibalancedicluster(gate) 
return gate 

The balancing process of FIG. 4 may include, for example, 
setting a macro-gate width parameter to W (i.e., W gates can 
be simulated concurrently in each level). Then sorting the 
gates in a macro-gate by level, where gates at Level 0 are ?rst. 
Fill W slots at each level, starting from Level 0, until all gates 
are mapped to a slot to complete the balancing. 

In the illustrated example of FIG. 4, after the balancing at 
the block 406, the process 400 will have generated a ?nite 
number of macro- gates, optimized them and generated all the 
support data structures necessary for the kernel code to simu 
late all gates in a netlist with a high level of parallelism on the 
GP-GPU 200. At this point, cluster data for the macro-gates 
and kernel code can be transferred to the GP-GPU 200, or 
other SIMD unit more generally, and simulated cycle-by 
cycle at block 408. 

Simulation begins with the host processor 100 transferring 
the kernel code and data structures to the SIMD unit 104 (e. g., 
the GP-GPU 200). In some examples, the SIMD unit 104 
takes over, without the assistance of the CPU 100, and sched 
ules the de?ned macro-gates for parallel execution. When all 
macro-gates have executed, one simulation cycle is complete, 
and the SIMD unit 104 may return control to the host proces 
sor 100, which may read the primary outputs, evaluate the 
testbench, set primary inputs and invoke the next cycle. In 
other examples, the SIMD unit 104 may perform multiple 
consecutive simulation cycles before communicating with 
the host processor 100 and returning control to the host pro 
cessor 100, for evaluating inputs and the testbench. Whether 
communication between the SIMD unit 104 and the host 
processor 100 occurs after each cycle or more infrequently 
may be determined by the testbench. 

In some examples, macro-gate execution on the SIMD 
UNIT 104 proceeds in three phases: scattering, logic evalua 
tion and gathering. During scattering, the macro-gate’s pri 
mary input data is retrieved from the device memory 208 and 
copied to the value matrix of FIG. 5 stored in the local shared 
memory 206. Next, logic evaluation progresses when each 
thread begins execution. The threads, each simulating one 
gate of the macro-gate, retrieve the relevant portion of the 
netlist from the device memory 208, as well as gate truth 
tables and net matrices from the local shared memory. With 
this information, the threads evaluate their gates by consult 
ing the truth table. Computed results are copied from the 
value matrix to the output buffer vectors in the device memory 
208. Finally, the threads synchronize after simulating their 
respective gates and the process is repeated for all the subse 
quent logic levels in the macro-gate. FIG. 9 shows an example 
of macro-gate execution for the sample netlist of FIG. 5. Six 
simultaneous, simulation threads are shown (Thread0 
Thread5), corresponding to the six inputs required at Level0. 
At Leve11, Thread0-Thread2 are used to each simulate a 
corresponding Leve11 gate, producing gate output values n0, 
n1, and n2, respectively. The process continues through 
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Leve12 and Level3, with the outputs for each thread synchro 
nized after each level execution. 

The simulation performed by the block 408 may be carried 
out directly on the SIMD UNIT 104, e.g., the GP-GPU 200. 
The overall simulation may alternate between execution of all 
active macro -gates in a layer, followed by ob serving the value 
changes in the monitored nets of the next layer to determine 
which macro- gates will be activated over the next level. Each 
individual macro-gate is simulated by a single thread block in 
an oblivious fashion. For simulation, the block 408 may 
include two kinds of parallelism: ?rst, multiple independent 
macro-gates are simulated by independent thread blocks pos 
sibly executing in parallel on different multi-processors 
within the SIMD UNIT 104; and second, the gates at the same 
level inside a macro-gate are simulated inparallel by different 
threads. 

Each macro-gate corresponds to one threadblock, and each 
core executes multiple thread blocks. Three concurrent thread 
blocks in a core for example requires assigning 3 macro-gates 
per core. The cores can execute more or fewer macro-gates. 

For example, the simulation block 408 can allocate one 
macro-gate per core, which allows for a larger macro-gate. 
Generally speaking, however, memory access latency is bet 
ter optimized with multiple thread blocks assigned per core. 
In some examples, an internal scheduler in the GP-GPU 200 
is responsible for determining which core will compute 
which thread blocks, hence the scheduling of macro-gates 
after they have been marked for simulation is internal. 

The simulation block 408 may, in some examples, simulate 
the macro-gates using an event-based triggering mechanism. 
FIG. 10 illustrates an example event-driven simulation opera 
tion 800. The illustration shows a layered structure of macro 
gates 802-812 and monitored nets 814 and 816. The illustra 
tion also shows how only activated macro- gates from the pool 
of macro-gates 802-812 at each layer are scheduled for execu 
tion. 

In some examples, the simulation block 408 is executed 
through two kernels alternatively or simultaneously execut 
ing on the SIMD UNIT 104. Operating within the SIMD unit 
104, a simulation kernel 818 simulates all active macro-gates 
in a layer. Also operating in the SIMD unit 104, a scheduling 
kernel 820 evaluates the array of monitored nets associated 
with the simulated layer to determine which macro-gates 
should be activated in the next layer. 

In the illustrated example, a single layer is simulated each 
simulation phase, where all layers (layer1-layer3) are simu 
lated during a single simulation cycle. During phase1 of a 
simulation cycle, macro-gates 802 and 804 are active and 
under simulation, because both have been scheduled by the 
scheduling kernel 820, as shown. The scheduling kernel 820 
monitors the resulting output nets 814 from phase1 and deter 
mines which macro-gate inputs have changed as a result. In 
this example, that is macro-gate 808 only. The kernel 820 
performs a synchronization to begin phase2 and activates the 
macro-gate 808 for simulation by the kernel 818. During 
phase2, therefore, only macro-gate 808 is simulated, not the 
layer 2 macro-gate 806 formed by the block 406. For layer 3, 
two overlapping macro-gates 810, 812 have been formed. In 
the illustrated example, at the end of phase2, the kernel 820 
determines from the monitored nets 816 that only the inputs 
for macro- gate 812 have changed. Therefore, only that 
macro-gate is activated for simulation during phase3. During 
the next simulation cycle, the kernel 818 may simulate a 
different set of the macro-gates 802-812 as determined by the 
scheduler 820. 

FIG. 11 illustrates an example process ?ow 900, in which 
a block 902 simulates the initial, lowest layer of macro-gates 
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during a simulation cycle. A block 904 assesses the nets 
resulting from these macro-gate simulations, after that block 
906 determines if any inputs have changed. If not, no further 
macro-gates need to be activated and the process ends. Oth 
erwise, block 908 identi?es the macro-gate(s) corresponding 
to the change in monitored nets and synchronizes the next 
simulation cycle to schedule these affected macro-gates. 
Block 910 then simulates any affected macro-gate and returns 
the process 900 to the block 906. 

In an implementation of the logic simulation, in which an 
array of monitored nets are mapped to unique locations, if a 
macro-gate simulation modi?es the value of any of these nets, 
the corresponding, mapped locations are tagged. Addition 
ally, each macro-gate may have a corresponding sensitivity 
list, where all the input nets triggering its activation are 
tagged. In such examples, to determine if any input change 
has occurred, a bit-wise AND operation between the moni 
tored nets array and a macro-gate’s sensitivity list may be 
performed (e.g., by the block 906). If a macro-gate input has 
changed, the macro -gate is activated for simulation during the 
next simulation cycle. If no input has changed, then the 
macro-gate will not be activated for simulation during the 
next cycle. 

With reference to FIG. 2, an example description of data 
storage is now provided. It will be appreciated that the tech 
niques may be implemented in other data storage con?gura 
tions. Each individual macro-gate may be simulated by a 
thread block corresponding to the processors 204; and each 
thread within that block 204 simulates one logic gate, one 
level at a time. The threads inside the thread blocks 204 
synchronize after each level so as to ?nish writing all the 
outputs of the gates of a previous level before the gates of next 
level are simulated. Truth tables for the gates in the technol 
ogy library are mapped to the shared memory 206 because of 
their frequent access. 
The intermediate net values (outputs of internal gates) may 

be stored in the shared memory 206 because they are accessed 
by several gates, and are the most frequently accessed values. 
The macro- gate topology may be stored in the device memory 
208, from which each single thread fetches their correspond 
ing gate type and connectivity information. The logic gates 
may be stored in a regular fashion like a matrix, where the 
location of each gate corresponds to the position of their 
output net in the balanced macro-gate. The logic gates may 
also correspond to the layout of the nets in the shared memory 
206, thus creating the scope of very regular execution suited 
for the SIMD UNIT 104. Each thread in the block 204 may 
fetch the information corresponding to a gate, which contains 
locations of input nets and which logic function this gate 
should perform. However, the balanced macro-gate from the 
block 406 is a regular structure, meaning that all such fetches 
are contiguous and may be coalesced to have minimum num 
ber of device memory loads. The input nets are read from the 
shared memory 206 and the truth table access determines the 
desired output, which is then written to the shared memory 
206. At the end of simulating a macro-gate, the produced 
outputs of the macro-gate, which are actually monitored nets, 
are transferred to their device memory location for value 
change detection. 
At least some of the various blocks, operations, and tech 

niques described above may be implemented utilizing hard 
ware, a processor executing ?rmware instructions, a proces 
sor executing software instructions, or any combination 
thereof. When implemented utilizing a processor executing 
software or ?rmware instructions, the software or ?rmware 
instructions may be stored on any suitable non-transitory 
computer readable medium such as on a magnetic disk, an 
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optical disk, or other storage medium, in a RAM or ROM or 
?ash memory, processor, hard disk drive, optical disk drive, 
tape drive, etc. The software or ?rmware instructions may 
include machine readable instructions that, when executed by 
the processor, cause the processor to perform various acts. 
When implemented in hardware, the hardware may com 

prise one or more of discrete components, an integrated cir 
cuit, an application-speci?c integrated circuit (ASIC), CPU, 
etc. 

While the present invention has been described with refer 
ence to speci?c examples, which are intended to be illustra 
tive only and not to be limiting of the invention, it will be 
apparent to those of ordinary skill in the art that changes, 
additions and/or deletions may be made to the disclosed 
embodiments without departing from the spirit and scope of 
the invention. 

The foregoing description is given for clearness of under 
standing only, and no unnecessary limitations should be 
understood therefrom, as modi?cations within the scope of 
the invention may be apparent to those having ordinary skill 
in the art. 

What is claimed: 
1. A method for logic simulation of a connectivity level 

description of an integrated circuit, where the connectivity 
level description comprises a plurality of logic elements, the 
method comprising: 

in a ?rst processor, clustering logic elements into cluster 
groups each comprising at least one of the plurality of 
logic elements, where the cluster groups are sized such 
that, during a simulation cycle, each cluster group is 
capable of being simulated on a different processor 
block of a second processor, wherein processing units of 
the second processor is con?gured for simultaneous 
operation, and wherein each cluster group is de?ned by 
a height corresponding to a number of logic levels of the 
cluster group and a width corresponding to a number of 
logical outputs of the cluster group, where the height and 
width of the cluster group de?ne the size of the cluster 
group, and wherein the height and width combination of 
at least one cluster group differs from the height and 
width combination of at least one other cluster group; 
and 

in the second processor, simultaneously simulating a plu 
rality of the cluster groups each being simulated on a 
different one of the processing units. 

2. The method of claim 1, wherein the connectivity level 
description is a netlist and the logic elements are logic gates 
within the netlist. 

3. The method of claim 2, further comprising separating the 
cluster groups into one of a plurality of layers, from a lowest 
level layer to a highest level layer. 

4. The method of claim 3, wherein each cluster group has a 
plurality of logic levels each having one or more logic ele 
ments, the method further comprising 

for at least one of the cluster groups, balancing the cluster 
group to equalize the number of logic elements at each of 
the plurality of logic levels for the cluster group. 

5. The method of claim 4, further comprising performing 
the balancing for each cluster group in a layer. 

6. The method of claim 3, wherein all cluster groups in a 
layer are capable of simultaneous simulation by the second 
processor. 

7. The method of claim 2, wherein the height of each 
cluster group is a gap height, which is the number of logic 
levels in a longest logic chain within the cluster group, and 
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wherein the width is a lid width, which is the number of 
logical output values provided by the cluster group after the 
simulation cycle. 

8. The method of claim 7, the method further comprising 
adjusting the respective gap height and lid width for each 
cluster group such that the cluster group is con?gured for 
simulation on one of the processing units. 

9. The method of claim 7, wherein the gap height and lid 
width are determined based on the number of cluster groups 
to be formed, the number of output values to be monitored 
after each simulation cycle, or an activation rate of logic 
elements within the cluster groups. 

10. The method of claim 2, wherein at least two of the 
cluster groups share a common logic element. 

11. The method of claim 2, wherein clustering the logic 
elements into cluster groups comprises: 

identifying a partitioning scheme; and 
segmenting the logic elements based on the partitioning 

scheme into the cluster groups, such that each cluster 
group is to simulate independent of each other cluster 
group during a simulation cycle. 

12. The method of claim 11, wherein the partitioning 
scheme is a cone partitioning scheme, wherein segmenting 
the logic elements comprises assigning at least one logic cone 
to each cluster group. 

13. The method of claim 12, wherein segmenting the logic 
elements comprises assigning to at least one cluster group 
only logic cones having an activity level above a threshold 
value. 

14. The method of claim 12, wherein segmenting the logic 
elements comprises assigning to at least one cluster group 
only logic cones having an activity level below a threshold 
value. 

15. The method of claim 1, further comprising clustering 
the logic elements into the cluster groups using a logic ele 
ment sharing scheme. 

16. The method of claim 1, further comprising clustering 
the logic elements into the cluster groups using an activation 
pro?le scheme. 

17. The method of claim 1, wherein simulating the cluster 
groups comprises simulating all cluster groups in the simu 
lation cycle. 

18. The method of claim 1, wherein simulating the cluster 
groups comprises identifying all cluster groups in a level that 
have a changed input during a simulation cycle and simulat 
ing the identi?ed cluster groups having the changed input. 

19. The method of claim 1, wherein the ?rst processor and 
the second processor are implemented in a single SIMD pro 
cessor. 

20. A logic simulator for simulating a connectivity level 
description of an integrated circuit, where the connectivity 
level description comprises a plurality of logic elements, the 
logic simulator comprising: 

a parallel processor having a plurality processing units 
capable of simultaneous execution by the parallel pro 
cessor; and 

a host processor con?gured to, 
cluster logic elements into cluster groups each cluster 

group comprising at least one of the plurality of logic 
elements, where the cluster groups are sized such that 
each cluster group is con?gured to be simulated on 
one of the processing units of the parallel processor, 
wherein each cluster group is de?ned by a height 
corresponding to a number of logic levels of the clus 
ter group and a width corresponding to a number of 
logical outputs of the cluster group, where the height 
and width of the cluster group de?ne the size of the 
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cluster group, and wherein the height and Width com 
bination of at least one cluster group differs from the 
height and Width combination of at least one other 
cluster group, and 

map each cluster group for simulation by one of the 
plurality of processing units. 

21. The logic simulator of claim 20, Wherein the parallel 
processor has a SIMD architecture. 

22. The logic simulator of claim 20, Wherein the parallel 
processor has a general purpose graphics processing unit 
(GP-GPU) architecture. 

23. The logic simulator of claim 20, Wherein the parallel 
processor has a compute uni?ed device architecture (CUDA) 
architecture. 

24. The logic simulator of claim 20, Wherein the parallel 
processor comprises a plurality of cores each having a plu 
rality of the processing units. 

25. The logic simulator of claim 24, Wherein the parallel 
processor comprises a device memory connected to each of 
the plurality of cores and a shared memory, Wherein the 
shared memory is con?gured for simultaneous access by each 
of the processing units Within one of the cores, during a 
processing cycle. 

26. The logic simulator of claim 20, Wherein the connec 
tivity level description is a netlist and the logic elements are 
logic gates Within the netlist. 

27. The logic simulator of claim 20, Wherein the host 
processor is further con?gured to separate the cluster groups 
into one of a plurality of layers, from a lowest level layer to a 
highest level layer. 

28. The logic simulator of claim 27, Wherein the host 
processor is further con?gured to balance the cluster groups. 

29. The logic simulator of claim 27, Wherein all a plurality 
of the cluster groups in a layer is con?gured for simultaneous 
simulation by the parallel processor. 

30. The logic simulator of claim 27, Wherein the height of 
each cluster group is a gap height, Which is the number of 
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logic levels in a longest logic chain Within the cluster group, 
and Wherein the Width is a lid Width, Which is the number of 
logical output values provided by the cluster group after a 
simulation cycle. 

31. The logic simulator of claim 30, Wherein the host 
processor is further con?gured to set the respective gap height 
and lid Width for each cluster group such that each cluster 
group is con?gured for simulation on one of the processing 
units. 

32. The logic simulator of claim 20, Wherein the host 
processor is further con?gured to cluster the logic elements 
using a logic element sharing scheme. 

33. The logic simulator of claim 20, Wherein the host 
processor is further con?gured to cluster the logic elements 
using an activation pro?le scheme. 

34. The logic simulator of claim 20, Wherein the parallel 
processor is con?gured to simulate all cluster groups of a 
level in a simulation cycle. 

35. The logic simulator of claim 20, Wherein the parallel 
processor is con?gured to: 

identify all cluster groups that have a changed input during 
a simulation cycle; and 

simulate the identi?ed cluster groups having the changed 
input. 

36. The logic simulator of claim 20, Wherein the host 
processor is con?gured to identify cones of logic elements 
Where each cone has an activity level. 

37. The logic simulator of claim 36, Wherein the host 
processor is con?gured to assign to at least one cluster group 
only cones having activity levels beloW a threshold value. 

38. The logic simulator of claim 36, Wherein the host 
processor is con?gured to assign to at least one cluster group 
only cones having activity levels above a threshold value. 

39. The logic simulator of claim 20, Wherein the host 
processor and the parallel processor are implemented in a 
single SIMD processor. 

* * * * * 


