
USOO8738349B2

(12) United States Patent (10) Patent No.: US 8,738,349 B2
Bertacco et al. (45) Date of Patent: May 27, 2014

(54) GATE-LEVEL LOGIC SIMULATOR USING OTHER PUBLICATIONS
MULTIPLE PROCESSOR ARCHITECTURES

(75) Inventors: Valeria Bertacco, AnnArbor, MI (US);
Debapriya Chatterjee, AnnArbor, MI
(US); Andrew Deorio, AnnArbor, MI
(Us)

(73) Assignee: The Regents of the University of
Michigan, Ann Arbor, MI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 940 days.

(21) App1.No.: 12/764,942

(22) Filed: Apr. 21, 2010

(65) Prior Publication Data

US 2011/0257955 A1 Oct. 20, 2011

Related US. Application Data

(60) Provisional application No. 61/326,212, ?led on Apr.
20, 2010.

(51) Int. Cl.
G06F 17/50

(52) US. Cl.
CPC G06F 17/5022 (2013.01)

USPC 703/15

(58) Field of Classi?cation Search
USPC 703/13416;716/101

See application ?le for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,941,774 B2 * 5/2011 Luan et al. 703/16
2004/0015798 A1 * l/2004 Davidson et a1. 716/5

2007/0136700 A1 * 6/2007 Wang et a1. 716/4

macroggate 4,

316

304a

primary: outputs at? register inputs

GOddeke et a1. “Using GPUs to Improve Multigrid Solver Perfor
mance on a Cluster”. Int. J. Computational science and Engineering.
2007. 20 pages.*
Owens et al. “GPU Computing”., 2008 IEEE., p. 879-899.*
Babb, et al., Logic emulation With virtual Wires. IEEE Trans. on CAD
16(6): 609-626 (1997).
Baker, et al., Parallel event-driven logic simulation algorithms: Tuto
rial and comparative evaluation. IEEE Journal on Circuits, Devices
and Systems l43(4):l77-l85 (1996).
Barzilai, et al. HSSia high-speed simulator. IEEE Trans. on CAD
6(4): 601-617 (1987).
Bergeron, Writing testbenches: functional veri?cation of HDL mod
els, Kluwer Academic Publishers (2000).
Bryant, et al. COSMOS: a compiled simulator for MOS circuits. In
Proc. DAC. 9-16 (1987).
Chandy, et a1. Asynchronous distributed simulation via a sequence of
parallel computations. Comm. ACM 24(4): 198-206 (1981).
Chatterjee, et al. Gcs: High-performance gate-level simulation With
GP-GPUs. In Proc. Date. 1332-1337 (2009b).
Chatterjee, et al., Event-driven gate-level simulation With gp-gpus.
In. Proc. DAC. 557-562 (2009a).

(Continued)

Primary Examiner * Eunhee Kim

(74) Attorney, Agent, or Firm * Marshall, Gerstein & Borun
LLP

(57) ABSTRACT

Techniques for simulating operation of a connectivity level
description of an integrated circuit design are provided, for
example, to simulate logic elements expressed through a
netlist description. The techniques utilize a host processor
selectively partitioning and optimizing the descriptions of the
integrated circuit design for e?icient simulation on a parallel
processor, more particularly a SIMD processor. The descrip
tion may be segmented into cluster groups, for example
macro-gates, formed of logic elements, Where the cluster
groups are sized for parallel simulation on the parallel pro
cessor. Simulation may occur in an oblivious as well as event

driven manner, depending on the implementation.

39 Claims, 8 Drawing Sheets

300

-t f

inay at: an water 013:;
. 302

306

US 8,738,349 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Deng, et al., Taming irregular eda applications on gpus. In ICCAD
’09: Proceedings of the 2009 International Conference on Computer
Aided Design, 539-546 (2009).
Edenfeld, et al., 2003 technology roadmap for semi-conductors.
IEEE Computer 37(1): 47-56 (2004).
Frank, Exploiting parallelism in a switch-level simulation machine.
Proc. DAC, 20-26 (1986).
Gulati, et al., Towards acceleration of fault simulation using graphics
processing units. In Proc, DAC 822-827 (2008).
Gulati, et al. Accelerating statistical static timing analysis using
graphics processing units. In Proc. ASPDAC 260-265 (2009).
Gulati, et al., Fast circuit simulation on graphics processing units. In
Proc. ASPDAC, 403-408 (2009).
Karthik, et al., Distributed VLSI simulation on a network of work
stations. In Proc. ICCD. 508-511 (1992).
Khronos Group. http://www.khronos.org/opencl/. Khronos Group,
The OpenCL Speci?cation, Oct. 2009, 308 pages.
Kim et al., Parallel logic simulation using time warp on shared
memory multiprocessors. In Proceedings of the 8th International
Symposium on Parallel Processing, 942-948 (1994).
Kim et al., Communication-ef?cient hardware acceleration for fast
functional simulation. In Proc. DAC, 293-298 (2004).
Kohler, et al., Code veri?cation by hardware acceleration. ASIC/ SOC
Conference, Proceedings 14th Annual IEEE International, pp. 65-69
(2001).
Lewis a hierarchical compiled code event-driven logic simulator.
IEEE Trans. on CAD 10(6):726-737 (1991).
Liu, et al. GPU-Based Parallelization for Fast Circuit Optimization,
In Proc. DAC. 943-946 (2009).

Matsumoto, et al., Parallel logic simulation on a distributed memory
machine. In Proc. EDAC, 76-80 (1992).
Meister A survey on parallel logic simulation. Tech. rep., University
of Saarland, Dept. of Computer Science, Misra J (1993).
Misra Distributed discrete-event simulation. ACM Computing Sur
veys 18:39-65 (1986).
Perinkulam, et al., Logic simulation using graphics processors. In
Proc. ITSW (2007).
Seiler, et al., Larrabee: a many-core X86 architecture for visual com
puting. ACM Trans. Graph. 27(3):l-15 (2008).
Shi et al., Gpu friendly fast poison solver for structured power grid
network analysis. In Proc. DAC. 178-183 (2009).
Soulé et al., Parallel logic simulation on general purpose machines. In
Proc. DAC. 166-171(1988).
Chatterjee, et al., “Gate-Level Simulation with GPU Computing,”
ACM Transactions on Design Automation of Electronic Systems,

l6(3):30-l to 30-26 (2011).
Bauer, et al., Reducing Rollback Overhead in Time-Warp Based
Distributed Simulation with Optimized Incremental State Saving,
Proc. ANSS, 12-20 (1993).
Berry, et al., Speeding Up Distributed Simulation Using the Time
Warp Mechanism, In Proc. of workshop on Making distributed sys
tems work, 14 pages (1986).
Denneau, “The Yorktown Simulation Engine.” Proc. DAC, 55-59
(1982).
Fujimoto, “Parallel Discrete Event Simulation,” Comm. ACM
33(10):30-53 (1990).
Manjikian, et al., High Performance Parallel Logic Simulations on a
Network of Work-stations, Proc. of workshop on Parallel and distrib
uted simulation 23(l):76-84 (1993).

* cited by examiner

US. Patent May 27, 2014 Sheet 1 0f8 US 8,738,349 B2

100

102 104

HOST Processor SIMD Processor
100 100 108

W 16 m?m?mm?mm
— — DMA LID E] E] El [:1 [:1 [:l/

108 E] El [:1 E] [I] E] E]
E m E] E] E] [1 E11 8 908 R108 08

FIG. 1

200

GP-GPU 202

l
l

' 6104604 604 64 55%; 200 SHARED MEMORY l
02

Q04 Q04 lgzloAr 1;2104 02 20c;

FIG. 2

US. Patent May 27, 2014 Sheet 2 0f8 US 8,738,349 B2

306

Gutput Bw?er {device}

509

,2 i: I' 1‘
3 9819435 Vaiue Matnx_
2 123 N53 (shamd memory:

pa iruth tame {shared memnry}
500 in!) M m2

PB PS1 Gateq
En ut Ma OS

device)

US. Patent May 27, 2014 Sheet 3 0f 8

p O

START

SYNTHESIZE CONNECTIVITY
LEVEL (RTL) DESCRIPTION OF

INTEGRATED CIRCUIT

(6.9., netlist)

/402

I
EXTRACT COMBINATIONAL

NETLIST
403

I
CLUSTER LOGIC GATES TO FORM

MACRO-GATES
/404

I
BALANCE MACRO-GATES TO

PRODUCE OPTIMIZED
CLUSTERING

/406

I
SIMULATE OPTIMIZED MACRO
GATES (e.g., OBLIVIOUS AND/OR
EVENT-DRIVEN SIMULATION)

/408

FIG. 4

US 8,738,349 B2

US. Patent May 27, 2014 Sheet 4 0f 8

O“) O O

DETERMINE A PARTITIONING
APPROACH

(e.g., CONE OF INFLUENCE)

DEFINE LAYERS AND CONE
PARTITIONING FROM NETLIST

T

602

604

ASSIGN CONES TO MACRO-GATE
606

ADDITIONAL MACRO-GATES?

6O '

NO

T
ALL GATES OF THE NETLIST
MAPPED TO AT LEAST ONE

MACRO-GATE

FIG. 6

US 8,738,349 B2

US 8,738,349 B2 Sheet 5 0f 8 May 27, 2014 US. Patent

m.“ .@E in .GE Ema EMEQE @wa EWEQE

iriwf. 8 ~

US. Patent May 27, 2014 Sheet 6 0f8 US 8,738,349 B2

Macro-gate simulation cycle before
balancing 3’

TM wwwwwwwwwwwwwwwwwwwwwwwwwwwww ‘‘‘‘‘‘‘ wwwwwwwwwwwwwwwww g

z ' : i2 5

,i ’ ,13” 55
w 2 /%w i

i * % égé

§~ ~~~~~~~~~~~~~~~~~~~~~ ~ »~3‘£8Q ~~~~~~~~~~~~~~~~~~~~~~ H: *1 255 *%

FIG. 8A FIG. 8B

‘ Exeamian mm ~
l 1 ",3; a an ,,

E MEG M11
ii

m

:13

31 3
% nil F13

Emma Yhmam Thme “mm

FIG. 9

US. Patent May 27, 2014 Sheet 8 0f 8 US 8,738,349 B2

(9 O

START

SIMULATE LOWEST LEVEL MACRO
GATE(S) DURING

SIMULATION CYCLE 902

I
ASSESS NETS/OUTPUTS OF
SIMULATED MACRO-GATES

06

INPUTS
OR MACRO—GATES CHANGE

OF

REACHED LAST LEVEL
SIMULATED?

Y,
Y

SYNCHRONIZE NEXT
SIMULATION CYCLE AND T\\

SCHEDULE AFFECTED MACRO- 908

GATE‘S’ FIG. 11

I
SIMULATE AFFECTED

MACRO-GATE(S)
910

US 8,738,349 B2
1

GATE-LEVEL LOGIC SIMULATOR USING
MULTIPLE PROCESSOR ARCHITECTURES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the bene?t of US. Provi
sional Application No. 61/326,212, entitled “Gate-Level
Logic Simulator Using Multiprocessor Architectures,” ?led
on Apr. 20, 2010, which is hereby incorporated by reference
herein in its entirety.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
Contract No. HR0011-07-3-0002 awarded by Defense
Advanced Research Projects Agency (DARPA). The United
States Government has certain rights in this invention.

FIELD OF THE INVENTION

This disclosure generally relates to simulation of inte
grated circuits for validation and, more particularly, to oblivi
ous and event-based techniques for simulating integrated cir
cuit descriptions in multiple processor architectures.

BACKGROUND

Logic simulation is a central aspect of the integrated circuit
(IC) development process and serves as the primary tool for
verifying a wide range of aspects in a design. Foremost
among these aspects is the correctness of a design’s func
tional behavior, both as a behavioral description of the sys
tem, as well as a structural (gate-level) description. Most
industry design ?ows invest the largest fraction of their time
and resources precisely on this task, in an attempt to provide
the best possible guarantee that the system satis?es its origi
nal functional speci?cation. Often large server farms com
prising thousands of machines are employed for months at a
time to execute billions of cycles of simulation. Much of this
time is consumed in simulation of gate-level netlists, which
involves large netlists at a fairly low-level description, com
prising many components that must be simulated. Overall the
simulation and veri?cation of an integrated circuit design is
one of the most time consuming tasks in the entire develop
ment process; and the performance limitations of logic simu
lators are one its main reasons. The consequences are poor

design coverage, delayed product releases and bugs that
escape into silicon.

Logic simulation entails evaluating the response of an IC
design over time when subjected to a set of input stimuli,
typically selected by the designer to be representative of
practical use situations. For most designs (synchronous), the
response of the logic simulation is computed once for each
cycle of simulated execution. Modern logic simulator imple
mentations read in a design description, then “compile” the
description to produce machine code emulating the same
functionality as the design’s primitives. Simulation ?nds
application in many aspects of a design development process,
including functional validation, power and timing estimation
and checking of equivalence among different circuit repre
sentation. Gate-level netlists must be simulated for most of
these applications.

Particularly problematic for logic simulators, however, is
that simulation of structural netlists is a notoriously time
consuming process, yet essential to determine that if a syn
thesized design matches the initial design speci?cations and

20

25

30

35

40

45

50

55

60

65

2
behavioral description. As circuit designs increase in size and
features offered, they increase in complexity. As a result,
there is an increasing need for improved performance by logic
simulators for IC design.

SUMMARY OF THE INVENTION

The present application describes techniques for logic
simulation of integrated circuit (IC) designs, using techniques
that selectively partition and optimize descriptions of the IC
design for more ef?cient simulation. The partitioning may be
applied to netlist descriptions of an IC design and optimized
for operation on an external processor. Once the netlist has
been partitioned and optimized, it may be simulated either in
an oblivious manner or in an event-driven manner. For the

former, the simulation may proceed by computing the output
values of logic component after logic component until the
entire IC design is simulated. For the latter, the simulation
may be performed by computing the output values only of
those logic components, or groups of logic components for
which certain event-based triggers have occurred (for
instance a change in the input values), so that most of those
components, whose output cannot experience a change in
value, do not contribute to the computation time of simula
tion.
The logic simulator may be executed using a host processor

and a general SIMD class processor. In some examples, the
logic simulator is executed using a host processor and a
general purpose graphics processor unit (GP-GPU) device.
The logic simulator is able to leverage massive parallelism in
suitable processor con?gurations to achieve large perfor
mance improvements over even the fastest modern commer
cial logic simulators.

In some examples, the logic simulator is a gate-level con
current simulator that partitions a netlist, register transfer
level (RTL), or other connectivity-based description of an IC,
optimizes that description, and then maps it to a processor for
simulation. In some examples, the mapping process includes
clustering and gate balancing processes, which are optimized
for the simulation processor.

In some examples, the logic simulator is optimized for
integrated circuits with large structural netlists. By leveraging
the parallelism offered by various types of processor archi
tectures, inparticular GP-GPUs, the simulator is able to lever
age netlist clustering and balancing algorithms tuned for the
target architecture.

In some examples, the logic simulator functions as an
event-driven simulator so that only a fraction of a netlist’s
gates are simulated each cycle. In such examples, the logic
simulator is to have minimal overhead for run-time event
scheduling, as this is an intrinsically sequential process, while
the simulator still needs to maintain a massively parallel
computation environment most of the time. Thus, in some
examples, the logic simulator is a hybrid simulator where
clusters of gates (called macro-gates) are simulated in an
oblivious fashion, while the scheduling of individual cluster
groups is organized in an event-driven fashion.

In an embodiment a method for logic simulation of a con
nectivity level description of an integrated circuit, where the
connectivity level description comprises a plurality of logic
elements, comprises: in a ?rst processor, clustering logic
elements into cluster groups each comprising at least one of
the plurality of logic elements, where the cluster groups are
sized such that, during a simulation cycle, each cluster group
is capable of being simulated on a different processorblock of
a second processor, wherein the processing units of the sec
ond processor are capable of simultaneous operation; and in

US 8,738,349 B2
3

the second processor, simultaneously simulating a plurality
of the cluster groups each being simulated on a different one
of the processing units.

In some such examples, the connectivity level description
is a netlist and the logic elements are logic gates within the
netlist.

Furthermore, some of these examples further comprise
separating the cluster groups into one of a plurality of layers,
from a lowest level layer to a highest level layer.

In some examples, each cluster group is de?ned by a gap
height, which is the number of logic levels in a longest logic
chain within the cluster group, and a lid width, which is the
number of logical output values provided by the cluster group
after the simulation cycle. Some of these examples further
comprise adjusting the respective gap height and lid width for
each cluster group such that the cluster group is capable of
simulation on one of the processing units.

In another embodiment, a logic simulator for simulating a
connectivity level description of an integrated circuit, where
the connectivity level description comprises a plurality of
logic elements, comprises: a parallel processor having a plu
rality processing units capable of simultaneous execution by
the parallel processor; and a host processor con?gured to,
cluster logic elements into cluster groups each cluster group
comprising at least one of the plurality of logic elements,
where the cluster groups are sized such that each cluster group
is capable of being simulated on one of the processing units of
the parallel processor, and map each cluster group for simu
lation by one of the plurality of processing units.

In some examples, the parallel processor comprises a
SIMD, general purpose graphics processing unit (GP-GPU)
architecture, or compute uni?ed device architecture (CUDA)
architecture. In some of these examples, the parallel proces
sor comprises a plurality of cores each having a plurality of
the processing units. In some examples, the parallel processor
comprises a device memory connected to each of the plurality
of cores and a shared memory, wherein the shared memory is
con?gured for simultaneous access by each of the processing
units within one of the cores, during a processing cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the disclosure, ref
erence should be made to the following detailed description
and accompanying drawing ?gures, in which like reference
numerals identify like elements in the ?gures, and in which:

FIG. 1 illustrates a con?guration for a logic simulator in
accordance with one example of the instant application, and
showing a host processor and a parallel processor;

FIG. 2 illustrates an example implementation of the paral
lel processor of FIG. 1;

FIG. 3 is a gate-level illustration of clustering on a portion
of netlist as part of a logic simulation performed by the host
processor of FIG. 1 to form cluster groups, e.g., macro-gates;

FIG. 4 is a ?ow diagram of a logic simulation process in
accordance with an example;

FIG. 5 is an illustration of an extracted combination portion
of a netlist in accordance with an example;

FIG. 6 is a ?ow diagram of clustering as performed in the
process of FIG. 4 in accordance with an example implemen
tation;

FIGS. 7A and 7B illustrate macro-gates formed by cluster
ing operations based on logic sharing (FIG. 7A) and activity
pro?le (FIG. 7B), in accordance with an example;

FIGS. 8A and 8B illustrate an example balancing of cluster
groups in accordance with an example;

20

25

30

35

40

45

50

55

60

65

4
FIG. 9 illustrates an example simulation of the macro-gate

for the sample netlist of FIG. 5;
FIG. 10 is an illustration of an example event-driven simu

lation for an entire circuit design description, as may be
executed by the parallel processor of FIG. 1; and

FIG. 11 is a ?ow diagram of an example event-driven
simulation in accordance with an example.

DETAILED DESCRIPTION

The present application describes techniques for logic
simulation of integrated circuit (IC) designs, using partition
ing and optimization techniques that may be initiated under
different conditions, including from event-based triggers.
The logic simulators may be executed on general SIMD class
processors. In some examples, however, the logic simulator is
executed on a general purpose graphics processing unit (GP
GPU), for example, that allows software applications to run
parallel processes across different functional pipelines. More
speci?cally, in some examples a particular class of GP-GPU
architectures are used, namely a compute uni?ed device
architecture (CUDA), which is a parallel computing architec
ture provided by NVIDIA Corporation, of Santa Clara, Calif.,
in various processors. These processor con?gurations are
provided by example, not limitation. In each of these proces
sor types as well as other applicable architectures, the logic
simulator may leverage massive parallelism to achieve large
performance improvements in IC circuit simulation and test
ing. In some examples, the logic simulator is optimized for
integrated circuits with large structural netlists. By leveraging
the parallelism offered by SIMD, GP-GPUs, CUDAs, etc., a
logic simulator is capable of applying a netlist balancing
process tuned for the target architecture.

In some examples, the logic simulator may be imple
mented as a gate-level concurrent simulator having a design
compilation process that partitions a netlist, register transfer
level (RTL), or other connectivity-based description of an IC.
The simulator may optimize that netlist, etc., and then map
gates thereof to the processor architecture. To achieve
improvements in performance, the simulator clusters the
gates for simulation and balances these clusters for simula
tion in a parallel processing environment. Thus, in some
examples, the particular clustering and gate balancing is opti
mized for more ef?cient utilization depending on the proces
sor architecture.

In some examples, the logic simulator may be imple
mented as an oblivious simulator that evaluates each gate
during each simulation cycle. In other examples, the logic
simulator is an event-driven simulator that only evaluates a
gate in response to particular events, such as if a change
occurs at a gate’s input nets. Oblivious simulators can offer
very simple scheduling, static data structures and better data
locality. While event-driven simulators rely upon a dynamic
analysis of which gates must be scheduled for re-evaluation.

In some event-driven designs, the logic simulator is con
?gured such that only a fraction of a netlist’s gates are simu
lated each cycle. The logic simulator may, for example, be
designed to use minimal overhead for run-time event sched
uling, as this is an intrinsically sequential process, while the
simulator still needs to maintain a massively parallel compu
tation environment mo st of the time. The clustering and bal
ancing, therefore, may be hybridized with an event trigger
based solution. For example, the logic simulator may cluster
gates (e.g., into macro-gates) that are simulated in an oblivi
ous fashion, but the scheduling of individual cluster groups is
organized in an event-driven manner.

US 8,738,349 B2
5

FIG. 1 is a high level illustration of a computing environ
ment 100 for executing a logic simulator of an IC design. In
some examples, a ?rst processor 102 is a stand-alone proces
sor capable of executing sequential code operations for the
simulator and that works together with another stand-alone
processor, a SIMD processing unit 104. In an example, the
?rst processor 102 is implemented as a physically separate
processing unit, e.g., a general-purpose central processing
unit (CPU), while the SIMD unit 104 is implemented as
another processing unit in the form of a general-purpose
graphics processing unit (GP-GPU). In other examples, the
processor 102 and the SIMD unit 104 re?ect different pro
cessors within the same processing unit. For example, both
102 and 104 may be implemented in a single, multiple pro
cessor architecture, that performs clustering and balancing
and mapping in one embedded processor thereof for simula
tion in other embedded processors thereof. In some of these
examples, the units 102 and 104 are the same SIMD proces
sor.

The host processor 102 and the SIMD unit 104 may be
connected via a direct memory access (DMA) 103, which is
provided by way of illustration, as any suitable wired or
wireless communication channel between the processors may
be used. In an implementation, computationally-intensive,
parallel code operations of the simulator 100 are o?loaded to
the processing unit 1 04 for execution. Typically, the processor
102 functions as a host processor and is a single core proces
sor or a multi-core processor with only a few cores. In the
illustrated example, the processor 102 has four cores 106. The
SIMD unit 104 in contrast is to have many cores 108, many
more than the host processor 102. These cores may be hard
ware or software based. In some examples, they each re?ect a
different processor executing a dedicated thread execution
block; where in some of these examples, the cores are distrib
uted over different processors. As used herein, “core” refers
to a grouping of processing units. A SIMD processor for
example may comprise multiple cores, each comprising mul
tiple processing units, each processing unit capable of execut
ing a different thread and in parallel.

The processor 102 is able to map code onto these cores 108
for parallel execution. Twenty four cores 108 are shown, by
way of example (though not all are labeled with a reference
number). In most examples, the SIMD unit 104 will have
much larger numbers of cores that may be segmented into
different processors. Example SIMD processors may have
80, 96, 192, 240, or 320 cores; although, the processors are
not limited in the number of cores. Each core functions as a

processor block. By way of example, not limitation, these
cores may be implemented with 16 bit, 64 bit or 128 bit
architectures; further, in some examples they may each
include dedicated ?oating point processors. The logic simu
lator is able to take advantage of any number of cores on the
SIMD unit 104. Thus to allow for a massive parallel execution
of netlist simulation, the SIMD unit 104 is not limited to a
particular number of cores.

FIG. 2 illustrates a particular example of the SIMD unit
104 as a GP-GPU 200. The GP-GPU 200 includes a limited

shared memory space for parallel processes running on the
processor 200, as well as additional components designed to
optimize the execution of graphic-processor speci?c memory
(e. g., texture memory). Examples of the GP-GPU 200 are the
CUDA processors available from NVIDIA Corporation of
Santa Clara, Calif. In any event, the GP-GPU 200 is able to
operate as a co-processor capable of executing many threads
in parallel. In some examples, logical simulation code is
compiled by the host processor 102 to a proprietary instruc
tion set and the resulting program, called a kernel, is executed

20

25

30

35

40

45

50

55

60

65

6
on the GP-GPU 200, with each parallel thread running the
same kernel code on distinct data blocks.

The GP-GPU processor 200 includes a plurality of cores
202, each having processing units 204 delineated in hard
ware. The processing units 204 can execute multiple threads
concurrently, e.g., up to 512 or more simultaneous threads at
the same time. In some examples, each core 202 executes
blocks of threads, all running the identical kernel code. As a
part of the GP-GPU architecture, a fast, shared memory 206
is available to each core 202, and more particularly to each
processing unit 204 of that core 202. In some examples, this
shared memory 206 is accessible within 1 clock cycle. A
device memory 208 is also provided on the GP-GPU 200, and
would typically be sized between 256 MB to 2 GB depending
on the application; although larger memories may be used.
The device memory 208 is accessible by all the cores 202, but
with a clock with a latency typically larger than that of the
shared memory, for example, a latency of 300 to 400 clock
cycles. This latency may be masked by time-interleaving
thread execution within a core; for example, while a group of
threads is executing on local data, others are suspended, wait
ing for their data to be transferred from the device memory. In
the illustrated example, all execution takes place on the SIMD
unit 104 (or the GP-GPU 200), while the host processor 100
serves only to invoke the beginning execution of a thread
batch and waits for completion of one or more cycles of netlist
simulation.

FIG. 3 is a gate-level illustration of a macro-gate clustering
operation 300 as performed by a logic simulator in accor
dance with an example. The operation 300 may be imple
mented via both the host processor 100 and the SIMD unit
104, e.g., the GP-GPU 200. A series of gates 302 (only some
of labeled) form a netlist of an IC design. The operation 300
clusters these gates into different macro-gates 304a-f This
clustering may be implemented as part of an oblivious simu
lation process of the logic simulator. A series of primary
inputs and register outputs 306 are coupled to the gates,
resulting in a series of primary outputs and register inputs 308
during a simulation cycle.

In some examples, the operation 300 may have a hybrid
nature in which the logic simulator not only applies an oblivi
ous simulation approach to clustering (e.g., to simulate every
logic gate in the design at every simulation cycle), but also an
event-driven approach that limits the number of cluster
groups being simulated at any given time. Thus, while the
oblivious simulation for clustering has the advantage of uni
form control ?ow; to prevent super?uous computation of
gates whose inputs did not change, the event-driven simula
tion can determine which subset of the gates should be simu
lated each cycle, e.g., by only simulating those gates whose
input values have changed.

Three factors may guide the process of macro-gate forma
tion, as shown in FIG. 3. (i) For macro-gates that are used in
an event-driven simulation at a coarse granularity (compared
to individual gates), the time required to simulate a certain
macro-gate should be substantially larger than the overhead
to decide which macro-gate to activate. (ii) The microproces
sors in the GPU communicate through slower device
memory: and as such the cores are able to execute indepen
dent of each other. This is assured if the macro-gates that are
simulated in parallel can be simulated independently of each
other. Thus the macro-gate formulation process may achieve
this goal by duplicating small portions of logic among the
macro-gates, thereby eliminating the need for communica
tion. (iii) Cyclic dependencies between macro-gates may be

US 8,738,349 B2
7

avoided in order to simulate each macro-gate at most once per
cycle, implying that the netlist can be levelized at the granu
larity of macro-gates as well.

In the illustrated example, the clustering operation 300
partitions the macro-gates into layers 310-314, each layer
encompassing a ?xed number of netlist levels. The macro
gates 304 may then be de?ned by selecting a set of nets at the
output boundary of a layer and then including the cone of
in?uence extending from those output nets backward to the
layer’s input netsithe tapering shape is that of a trapezoid.
Three layers 310-314 are shown in the illustrated example,
each layering having two levels of gate logic. However, any
number of layers and levels, larger or smaller, may be used.
The number of levels within each layer is termed the gap
height and corresponds to the height of the macro-gate, i.e.,
the number of logic levels in the longest logic chain within a
macro-gate.

In the operation 300, some logic gates have been assigned
to more than one macro-gate. Logic gate 316, for example,
has been duplicated into two macro-gates, 304e and 304], for
computation of respective output nets.

There are several possible policies for selecting the nets
whose cones of in?uence will be clustered by the process 300
into a single macro-gate. To minimize duplication, for
example, the logic simulator can attempt to cluster those nets
whose cones of in?uence have a maximum number of gates in
common. The number of output nets used to generate each
macro-gate is a variable parameter, termed the lid. In some
examples, the logic simulator executing the process 300
exempli?ed in FIG. 3 may select the value for the lid param
eter so that the number of logic gates in all macro-gates
304a-304f is approximately the same.

FIG. 4 illustrates a process 400 implemented by a logic
simulator running on the host processor 100 and SIMD UNIT
104 to form macro-gates as illustrated in FIG. 3. In an
embodiment, at a block 402, the host processor 100 synthe
sizes a register transfer level (RTL) description of an IC
design, such as the netlist. For example, the host processor
100 performs a compilation, where the CPU 100 receives a
gate-level netlist as input, compiles the netlist and maps the
netlist into a SIMD unit 104, or in this example to the GP
GPU 200.

Next, the host processor 100 extracts the combinational
logic elements (e.g., AND, OR, NOT, XOR, etc.) from the
netlist at block 403 for the purpose of setting up an initial
netlist to be mapped for simulation. At block 404, the host
processor 100 then partitions the netlist into cluster groups,
e.g., macro-gates such as 304, which are logic blocks appro
priately sized to ?t within the constraints of the SIMD archi
tecture, e.g., with the constraints of a GP-GPU or CUDA
architecture. The block 404, for example, may prepare pre
liminary (or rough) cluster groupings based on size estimates
quickly computed on the ?y. At block 406, the CPU 100 then
balances these preliminary cluster groupings through an opti
mization process, restructuring cluster groups to improve
compute e?iciency during simulation. The block 404, for
example, may perform a SIMD-independent clustering of
netlist gates; whereas the block 406 may perform a SIMD
processor speci?c optimization of the generated cluster
groups to form balanced macro-gates that simulate ef?ciently
on the SIMD unit 104, e.g., the GP-GPU 200. In some
examples, the block 406 balances the clusters to maximize
e?iciency, although maximization is not required. Finally, all
the required data structures are compiled into the SIMD ker
nel and transferred to the SIMD device. The optimized
macro-gates partitioned design is then simulated at block 408.

20

25

30

35

40

45

50

55

60

65

8
The block 402 may be implemented through any number of

synthesis techniques. The process 400 generally uses a gate
level netlist as the input, where this input is either a synthe
sized version of a design under veri?cation, or a behavioral
description to which a synthesis step is applied. Such synthe
sis may or may not be optimized for time, power, area, or any
other metric.

In operation, the block 403 may extract the combinational
portion of the gate-level netlist and map it to the GP-GPU
200, creating data structures to represent the gates, as well as
their input and outputs. An example illustration of an
extracted combination portion of a netlist is shown in FIG. 5.
A combinational portion of a netlist topology 500 contains a
plurality of logic gates 502, having plurality of corresponding
inputs 504 from a lower level region and a plurality of outputs
506 to a higher level region. These re?ect the structures
required for simulation of the portion 500. The block 404 may
establish a value matrix 508 which stores the intermediate net
values for simulation of the portion 500. In the illustrated
example, there is a one-to-one correspondence between a row
of intermediate values and the various levels of logic on the
netlist 500. As a thread is executing during simulation, the
GP-GPU 200 may be able to store and retrieve intermediate
net values using the local shared memory 206. In the illus
trated example, each net of the matrix 508 requires 2 bits of
storage in a 4-valued simulator, where all these values may be
stored in the faster shared memory 206. The shared memory
206 may also store gate-type truth tables 509 consulted for the
evaluation of each gate.

All other data structures associated with the simulation
may reside in the device memory 208. That is, in the illus
trated example, input buffer values 510 may be stored in the
device memory 208, along with output buffer values 512 of
the entire netlist simulation. The netlist topology information
may be stored there as well. Thus, data such as the netlist
topology information that is required often may be stored in
the device memory 208. However, in the example described,
data to be shared among threads is stored locally.

FIG. 6 illustrates an example clustering process 600 that
may be executed by the block 404 of FIG. 4 and by the host
processor 100. First a block 602 determines what type of
partitioning approach is to be applied to the netlist, such as
cone partitioning illustrated in this example. While an
example fanout-cone partitioning is described, it is under
stood that other types of partitioning may be used, including
mini-cut partitioning, fanin-cone partitioning, random clus
tering, etc. Block 604 may separate the netlist into layers and
then into preliminary clusters of gates, in this example cones,
where each cluster group after completion is to be formed into
one or more macro- gates that are each executed on a different

thread block (i.e., the cores 204) of the GP-GPU 200. Some
GP-GPU architectures, such as CUDA architectures, do not
allow information transfer among thread blocks within a
simulation cycle; therefore all thread blocks are to execute
independently. In other examples, this need not be the case.
The block 602 may be implemented to minimize redundant
computation of gates, maintain data structure organization,
and maximize data locality. Thus, the cluster groups may be
self-contained and not require communication with other
cluster groups within a simulation cycle, which are features of
cone partitioning.

Generally speaking, for cone partitioning, the netlist is
viewed as a set of logic cones, one for each of the netlist’s
outputs. The block 604 transmits preliminary partition data to
a block 606, where each identi?ed cone by block 604 includes
all the gates that contribute to the evaluation of the cone
output. The block 606 analyzes these cones and assigns them

US 8,738,349 B2
9

to macro-gates (i.e., cluster groups). The process 600, for
example, may operate one macro-gate at a time, as illustrated,
or may de?ne multiple macro-gates at once.
Due to the lack of inter-cluster communication capability,

each macro-gate is to include one or more cones of logic; and
each cone is fully contained within a macro-gate. As a result,
once a macro-gate has been completely simulated by the
process 400, one or more output values have been computed
and can be stored directly into an output buffer vector. In
forming the cones into macro-gates, the block 606 may pro
duce cone overlap, which necessarily requires that some gates
are duplicated, because they belong to multiple cones. The
incidence of this extra computation is small in practice. In
execution, the block 606 may assign one cone of logic to the
cluster group from block 604, and add additional cones to this
cluster group until memory resources have been exhausted.
Various criteria for adding cones may be used, such as the
maximal number of overlapping gates, where, for example, a
second logic cone is selected so that it is the cone that overlaps
the most with the ?rst cone. In other words, the block 604 may
create all the cones of logic per the partitioning approach, e.g.,
by taking each output wire from a layer and ?nding all the
gates that contribute to compute the value of that wire. The
block 606 then is able to pack together several of these cones
to make a macro-gate. How many cones may be chosen is
based on how much shared memory (which is fast to access)
is available on the platform. One way to ?t more cones into a
macro-gate is to assign cones with a large number of gates in
common. For instance, if coneA is comprised of 20 gates, and
cone B is comprised of 25 gates, and cones A and B have 15
gates in common, then the block 606 could assign these two
cones to the same macro-gate and generated a macro-gate
comprising 20+25—15:30 gates, a reduction of 15 gates from
the potential 45.

The block 606 determines macro-gate siZing. To do this,
two macro-gate parameters are considered: the gap and the
lid, which collectively control the granularity at which an
event-driven mechanism operates. The block 606 may deter
mine gap and lid values for the macro-gates by evaluating a
range of candidate <gap,lid> value pairs. For each candidate
pair, the block 606 may assess several metrics: number of
macro-gates, number of monitored nets, size of macro-gates,
and/ or activation rate. The activation rate may be obtained by
a mock-up of the simulation on a micro testbench, for
example. Once the candidate gap, lid pairs have been deter
mined, the block 606 may then select the locally optimal
values for the gap and lid pair.

The processes 400 and 600 may be written in C, C++, or
other suitable programming language.

The boundaries for the range of gap values considered may
be derived from the number of monitored nets generated, e. g.,
considering only gap values for which no more than 50% of
the total nets are monitored. In practice, small gap values tend
to generate many monitored nets, while large gap values
trigger high activation rates. For determination of the lid
value, the block 606 may bound the analysis by estimating
how many macro-gates will be created at each layer, striving
to run all the macro-gates concurrently. Such determination
may be based on the number of cores (e.g., 202) on the
particular GPU architecture being used. For a CUDA archi
tecture that includes 14 microprocessors and a CUDA sched
uler that allows at most three thread blocks in concurrent
execution on the same core, the block 606 may thus consider
lid values that generate no more than 14x3:42 macro-gates
per layer.

In other examples, the clustering of cones used to form
macro-gates may be based on an activity pro?le. Any macro

20

25

30

35

40

45

50

55

60

65

10
gate containing a frequently activated logic gate will result in
the entire macro-gate being simulated. As such, the block 606
may seek to consolidate logic cones with frequently activated
logic gates into the same macro-gate. FIGS. 7A and 7B show
an example of clustering based on estimated activity pro?le,
e.g., activation rates, where the shading of a cone indicates its
activation frequency.

FIG. 7A shows two macro-gates 702 and 704 each with
corresponding cones 706/708 and 710/712, respectively,
where cones 706 and 712 are shaded to indicate a higher
activity cone while cones 708 and 710 are lower activity
cones. The block 606 may cluster the cones by degree of logic
sharing, as shown in FIG. 7A, as discussed above. The result,
in this example, is that two higher activity cones 706 and 712
are clustered with the lower activity cones 708 and 710,
resulting in both macro-gates 702 and 704 having high acti
vation frequencies. In other examples, the block 606 may
cluster based on the activation rates (e.g., activation fre
quency), such that the high activity cones 706 and 712 are
placed in the same macro-gate 714 (FIG. 7B), while the lower
activity cones 708 and 710 are placed in the other macro-gate
716. The result is frequently activated macro- gates with other
macro-gates that are rarely activated. This may or may not
result in a higher degree of gate duplication as shown by the
lesser overlap of the cones; yet in some examples, this trade
off is justi?ed by the signi?cant reduction in the total number
of macro-gate simulations that are to be performed.

Pro?ling may be used to estimate activity pro?les, for
example, ?rst simulating a micro-testbench (10,000 cycles
long) on a segmented circuit using the default clustering
policy. During this simulation, the activation rates of each
logic cone in each layer may be aggregated. The activation
frequency of a cone is de?ned as the maximum of the activa
tion frequency of all of its input wires, because that cone will
need to be simulated if any of the input nets undergoes a value
change. However, the input nets which form the base of the
cone are part of monitored nets. Hence, the activation fre
quency of all cones can be computed by recording the acti
vation frequency of the monitored nets. Once these are com
puted, the segmentation process is performed again, but cones
are added to macro- gates based on activation frequency rather
than simply by logic sharing.
The block 606 determines the value of gap and lid, but

these do not necessarily have to be constant during an entire
clustering process. In fact, from an activity stand point, the
gap parameter may vary, for example, with lower level gates
being the most frequently active. To address this, an annihi
lation ratio of a logic cone may be de?ned as the ratio of the
activation frequency at the apex of the cone and the maximum
of the activation frequencies of the wires at the base of the
cone. In an example, the block 606 reaches the ideal gap value
when the number of logic levels in a cone results in a suf?
ciently low value of this annihilation ratio for all the cones in
a layer. In fact, the number of levels needed may vary from
cone to cone, such that the block 606 can locally vary values
of a gap, with a macro-gate being composed of a few cones
reaching the desired value of annihilation ratio, within the
same number of levels, and the lid being a byproduct thereof.
For example, the gap value may vary such that within a
macro-gate different gap heights are present, instead of the
purely trapezoidal shape in the example of FIG. 3. Across the
lid, the lower gap heights may be formed within the macro
gate.

In FIG. 6, block 608 determines if additional cluster groups
are to be formed; and, if so, control is returned to block 604.
If not, the clustering process is completed when all gates have

US 8,738,349 B2
11

been mapped to a set of cluster groups, preferably by mini
mizing logic overlap while satisfying the constraints of
shared memory resources.

An example data?ow chart illustrating example steps, in
pseudocode form, is provided below.

clustering (netlist){
sort(outputicones)
for each (outputicone) {

new cluster = outputicone;

while (size(cluster) < MAX SIZE) do {
cluster += max overlap(

output cones, cluster);
} append (cluster, clusters);

return clusters;

Returning to FIG. 4, the block 406 performs balancing on
the macro-gates provided by process 500. This balancing may
seek to minimize the critical execution path of thread blocks
(macro-gates) on the GP-GPU 200. For example, the block
406 may consider each de?ned macro-gate individually and
optimize the scheduling of each gate simulation so that the
number of logic levels is minimized. The simulation latency
of a single cycle is limited by the macro-gate with the most
logic levels, since each additional level requires another
access to the slower device memory. Considering the number
of logics levels (gap) and the number of concurrent threads
simulating distinct gates (lid), the block 406 balances these
within the constraints of the SIMD UNIT 104 architecture.
With the GP-GPU 200 it is desired to have a maximum of 256
concurrent threads. Although more or fewer concurrent
threads may be executed depending on the processor archi
tecture.

The cluster balancing of block 406 may reshape the natural
triangular macro -gates to a rectangular shape with a 256-wide
base. Macro-gates tend to be triangular in visual depiction,
because they are a collection of cones of logic, which are
usually triangular where a wide set of inputs computes one
output through several stages of gates. An example clustering
operation is illustrated in FIGS. 8A and 8B. The original
macro-gate has a base width of3,l60 gates and a height of 67
levels of logic, where most of the deeper levels require sig
ni?cantly less than 3,000 threads. In SIMD-based processors,
including GP-GPU and CUDA, simulation on the macro -gate
wouldrequired 3, 160 simultaneous threads at Level 0, and the
same number of occupied threads until all 67 levels of simu
lated code has been completed, even though after each suc
cessive logic level fewer threads will be functions. The block
406 reshapes the macro-gate execution scenario into a more
ef?cient rectangular shape scenario with a base width of 256
gates, i.e., 256 simultaneous threads that are used consistently
through all logic levels. In the illustrated example, the bal
anced macro-gate executes over a larger cluster height (81
versus 67) than would have occurred prior to balancing. But
the tradeoff results in substantially larger ef?ciency of opera
tion, as fewer gates are required to simulate the macro-gate
(256 versus 3160).
An example data?ow chart illustrating example steps, in

pseudocode form, is provided below.

balanceicluster() {
for each level in height

for each column in width

balancedicluster?evel] [column] =
select_gate()

m

20

25

30

35

40

45

50

55

60

65

12
-continued

}

return balancedicluster

}
select_gate() {

sort gates in cluster by height
for each gate in cluster {

if not assigneditoibalancedicluster(gate)
return gate

The balancing process of FIG. 4 may include, for example,
setting a macro-gate width parameter to W (i.e., W gates can
be simulated concurrently in each level). Then sorting the
gates in a macro-gate by level, where gates at Level 0 are ?rst.
Fill W slots at each level, starting from Level 0, until all gates
are mapped to a slot to complete the balancing.

In the illustrated example of FIG. 4, after the balancing at
the block 406, the process 400 will have generated a ?nite
number of macro- gates, optimized them and generated all the
support data structures necessary for the kernel code to simu
late all gates in a netlist with a high level of parallelism on the
GP-GPU 200. At this point, cluster data for the macro-gates
and kernel code can be transferred to the GP-GPU 200, or
other SIMD unit more generally, and simulated cycle-by
cycle at block 408.

Simulation begins with the host processor 100 transferring
the kernel code and data structures to the SIMD unit 104 (e. g.,
the GP-GPU 200). In some examples, the SIMD unit 104
takes over, without the assistance of the CPU 100, and sched
ules the de?ned macro-gates for parallel execution. When all
macro-gates have executed, one simulation cycle is complete,
and the SIMD unit 104 may return control to the host proces
sor 100, which may read the primary outputs, evaluate the
testbench, set primary inputs and invoke the next cycle. In
other examples, the SIMD unit 104 may perform multiple
consecutive simulation cycles before communicating with
the host processor 100 and returning control to the host pro
cessor 100, for evaluating inputs and the testbench. Whether
communication between the SIMD unit 104 and the host
processor 100 occurs after each cycle or more infrequently
may be determined by the testbench.

In some examples, macro-gate execution on the SIMD
UNIT 104 proceeds in three phases: scattering, logic evalua
tion and gathering. During scattering, the macro-gate’s pri
mary input data is retrieved from the device memory 208 and
copied to the value matrix of FIG. 5 stored in the local shared
memory 206. Next, logic evaluation progresses when each
thread begins execution. The threads, each simulating one
gate of the macro-gate, retrieve the relevant portion of the
netlist from the device memory 208, as well as gate truth
tables and net matrices from the local shared memory. With
this information, the threads evaluate their gates by consult
ing the truth table. Computed results are copied from the
value matrix to the output buffer vectors in the device memory
208. Finally, the threads synchronize after simulating their
respective gates and the process is repeated for all the subse
quent logic levels in the macro-gate. FIG. 9 shows an example
of macro-gate execution for the sample netlist of FIG. 5. Six
simultaneous, simulation threads are shown (Thread0
Thread5), corresponding to the six inputs required at Level0.
At Leve11, Thread0-Thread2 are used to each simulate a
corresponding Leve11 gate, producing gate output values n0,
n1, and n2, respectively. The process continues through

US 8,738,349 B2
13

Leve12 and Level3, with the outputs for each thread synchro
nized after each level execution.

The simulation performed by the block 408 may be carried
out directly on the SIMD UNIT 104, e.g., the GP-GPU 200.
The overall simulation may alternate between execution of all
active macro -gates in a layer, followed by ob serving the value
changes in the monitored nets of the next layer to determine
which macro- gates will be activated over the next level. Each
individual macro-gate is simulated by a single thread block in
an oblivious fashion. For simulation, the block 408 may
include two kinds of parallelism: ?rst, multiple independent
macro-gates are simulated by independent thread blocks pos
sibly executing in parallel on different multi-processors
within the SIMD UNIT 104; and second, the gates at the same
level inside a macro-gate are simulated inparallel by different
threads.

Each macro-gate corresponds to one threadblock, and each
core executes multiple thread blocks. Three concurrent thread
blocks in a core for example requires assigning 3 macro-gates
per core. The cores can execute more or fewer macro-gates.

For example, the simulation block 408 can allocate one
macro-gate per core, which allows for a larger macro-gate.
Generally speaking, however, memory access latency is bet
ter optimized with multiple thread blocks assigned per core.
In some examples, an internal scheduler in the GP-GPU 200
is responsible for determining which core will compute
which thread blocks, hence the scheduling of macro-gates
after they have been marked for simulation is internal.

The simulation block 408 may, in some examples, simulate
the macro-gates using an event-based triggering mechanism.
FIG. 10 illustrates an example event-driven simulation opera
tion 800. The illustration shows a layered structure of macro
gates 802-812 and monitored nets 814 and 816. The illustra
tion also shows how only activated macro- gates from the pool
of macro-gates 802-812 at each layer are scheduled for execu
tion.

In some examples, the simulation block 408 is executed
through two kernels alternatively or simultaneously execut
ing on the SIMD UNIT 104. Operating within the SIMD unit
104, a simulation kernel 818 simulates all active macro-gates
in a layer. Also operating in the SIMD unit 104, a scheduling
kernel 820 evaluates the array of monitored nets associated
with the simulated layer to determine which macro-gates
should be activated in the next layer.

In the illustrated example, a single layer is simulated each
simulation phase, where all layers (layer1-layer3) are simu
lated during a single simulation cycle. During phase1 of a
simulation cycle, macro-gates 802 and 804 are active and
under simulation, because both have been scheduled by the
scheduling kernel 820, as shown. The scheduling kernel 820
monitors the resulting output nets 814 from phase1 and deter
mines which macro-gate inputs have changed as a result. In
this example, that is macro-gate 808 only. The kernel 820
performs a synchronization to begin phase2 and activates the
macro-gate 808 for simulation by the kernel 818. During
phase2, therefore, only macro-gate 808 is simulated, not the
layer 2 macro-gate 806 formed by the block 406. For layer 3,
two overlapping macro-gates 810, 812 have been formed. In
the illustrated example, at the end of phase2, the kernel 820
determines from the monitored nets 816 that only the inputs
for macro- gate 812 have changed. Therefore, only that
macro-gate is activated for simulation during phase3. During
the next simulation cycle, the kernel 818 may simulate a
different set of the macro-gates 802-812 as determined by the
scheduler 820.

FIG. 11 illustrates an example process ?ow 900, in which
a block 902 simulates the initial, lowest layer of macro-gates

20

25

30

35

40

45

50

55

60

65

14
during a simulation cycle. A block 904 assesses the nets
resulting from these macro-gate simulations, after that block
906 determines if any inputs have changed. If not, no further
macro-gates need to be activated and the process ends. Oth
erwise, block 908 identi?es the macro-gate(s) corresponding
to the change in monitored nets and synchronizes the next
simulation cycle to schedule these affected macro-gates.
Block 910 then simulates any affected macro-gate and returns
the process 900 to the block 906.

In an implementation of the logic simulation, in which an
array of monitored nets are mapped to unique locations, if a
macro-gate simulation modi?es the value of any of these nets,
the corresponding, mapped locations are tagged. Addition
ally, each macro-gate may have a corresponding sensitivity
list, where all the input nets triggering its activation are
tagged. In such examples, to determine if any input change
has occurred, a bit-wise AND operation between the moni
tored nets array and a macro-gate’s sensitivity list may be
performed (e.g., by the block 906). If a macro-gate input has
changed, the macro -gate is activated for simulation during the
next simulation cycle. If no input has changed, then the
macro-gate will not be activated for simulation during the
next cycle.

With reference to FIG. 2, an example description of data
storage is now provided. It will be appreciated that the tech
niques may be implemented in other data storage con?gura
tions. Each individual macro-gate may be simulated by a
thread block corresponding to the processors 204; and each
thread within that block 204 simulates one logic gate, one
level at a time. The threads inside the thread blocks 204
synchronize after each level so as to ?nish writing all the
outputs of the gates of a previous level before the gates of next
level are simulated. Truth tables for the gates in the technol
ogy library are mapped to the shared memory 206 because of
their frequent access.
The intermediate net values (outputs of internal gates) may

be stored in the shared memory 206 because they are accessed
by several gates, and are the most frequently accessed values.
The macro- gate topology may be stored in the device memory
208, from which each single thread fetches their correspond
ing gate type and connectivity information. The logic gates
may be stored in a regular fashion like a matrix, where the
location of each gate corresponds to the position of their
output net in the balanced macro-gate. The logic gates may
also correspond to the layout of the nets in the shared memory
206, thus creating the scope of very regular execution suited
for the SIMD UNIT 104. Each thread in the block 204 may
fetch the information corresponding to a gate, which contains
locations of input nets and which logic function this gate
should perform. However, the balanced macro-gate from the
block 406 is a regular structure, meaning that all such fetches
are contiguous and may be coalesced to have minimum num
ber of device memory loads. The input nets are read from the
shared memory 206 and the truth table access determines the
desired output, which is then written to the shared memory
206. At the end of simulating a macro-gate, the produced
outputs of the macro-gate, which are actually monitored nets,
are transferred to their device memory location for value
change detection.
At least some of the various blocks, operations, and tech

niques described above may be implemented utilizing hard
ware, a processor executing ?rmware instructions, a proces
sor executing software instructions, or any combination
thereof. When implemented utilizing a processor executing
software or ?rmware instructions, the software or ?rmware
instructions may be stored on any suitable non-transitory
computer readable medium such as on a magnetic disk, an

US 8,738,349 B2
15

optical disk, or other storage medium, in a RAM or ROM or
?ash memory, processor, hard disk drive, optical disk drive,
tape drive, etc. The software or ?rmware instructions may
include machine readable instructions that, when executed by
the processor, cause the processor to perform various acts.
When implemented in hardware, the hardware may com

prise one or more of discrete components, an integrated cir
cuit, an application-speci?c integrated circuit (ASIC), CPU,
etc.

While the present invention has been described with refer
ence to speci?c examples, which are intended to be illustra
tive only and not to be limiting of the invention, it will be
apparent to those of ordinary skill in the art that changes,
additions and/or deletions may be made to the disclosed
embodiments without departing from the spirit and scope of
the invention.

The foregoing description is given for clearness of under
standing only, and no unnecessary limitations should be
understood therefrom, as modi?cations within the scope of
the invention may be apparent to those having ordinary skill
in the art.

What is claimed:
1. A method for logic simulation of a connectivity level

description of an integrated circuit, where the connectivity
level description comprises a plurality of logic elements, the
method comprising:

in a ?rst processor, clustering logic elements into cluster
groups each comprising at least one of the plurality of
logic elements, where the cluster groups are sized such
that, during a simulation cycle, each cluster group is
capable of being simulated on a different processor
block of a second processor, wherein processing units of
the second processor is con?gured for simultaneous
operation, and wherein each cluster group is de?ned by
a height corresponding to a number of logic levels of the
cluster group and a width corresponding to a number of
logical outputs of the cluster group, where the height and
width of the cluster group de?ne the size of the cluster
group, and wherein the height and width combination of
at least one cluster group differs from the height and
width combination of at least one other cluster group;
and

in the second processor, simultaneously simulating a plu
rality of the cluster groups each being simulated on a
different one of the processing units.

2. The method of claim 1, wherein the connectivity level
description is a netlist and the logic elements are logic gates
within the netlist.

3. The method of claim 2, further comprising separating the
cluster groups into one of a plurality of layers, from a lowest
level layer to a highest level layer.

4. The method of claim 3, wherein each cluster group has a
plurality of logic levels each having one or more logic ele
ments, the method further comprising

for at least one of the cluster groups, balancing the cluster
group to equalize the number of logic elements at each of
the plurality of logic levels for the cluster group.

5. The method of claim 4, further comprising performing
the balancing for each cluster group in a layer.

6. The method of claim 3, wherein all cluster groups in a
layer are capable of simultaneous simulation by the second
processor.

7. The method of claim 2, wherein the height of each
cluster group is a gap height, which is the number of logic
levels in a longest logic chain within the cluster group, and

20

25

30

35

40

45

50

55

60

65

16
wherein the width is a lid width, which is the number of
logical output values provided by the cluster group after the
simulation cycle.

8. The method of claim 7, the method further comprising
adjusting the respective gap height and lid width for each
cluster group such that the cluster group is con?gured for
simulation on one of the processing units.

9. The method of claim 7, wherein the gap height and lid
width are determined based on the number of cluster groups
to be formed, the number of output values to be monitored
after each simulation cycle, or an activation rate of logic
elements within the cluster groups.

10. The method of claim 2, wherein at least two of the
cluster groups share a common logic element.

11. The method of claim 2, wherein clustering the logic
elements into cluster groups comprises:

identifying a partitioning scheme; and
segmenting the logic elements based on the partitioning

scheme into the cluster groups, such that each cluster
group is to simulate independent of each other cluster
group during a simulation cycle.

12. The method of claim 11, wherein the partitioning
scheme is a cone partitioning scheme, wherein segmenting
the logic elements comprises assigning at least one logic cone
to each cluster group.

13. The method of claim 12, wherein segmenting the logic
elements comprises assigning to at least one cluster group
only logic cones having an activity level above a threshold
value.

14. The method of claim 12, wherein segmenting the logic
elements comprises assigning to at least one cluster group
only logic cones having an activity level below a threshold
value.

15. The method of claim 1, further comprising clustering
the logic elements into the cluster groups using a logic ele
ment sharing scheme.

16. The method of claim 1, further comprising clustering
the logic elements into the cluster groups using an activation
pro?le scheme.

17. The method of claim 1, wherein simulating the cluster
groups comprises simulating all cluster groups in the simu
lation cycle.

18. The method of claim 1, wherein simulating the cluster
groups comprises identifying all cluster groups in a level that
have a changed input during a simulation cycle and simulat
ing the identi?ed cluster groups having the changed input.

19. The method of claim 1, wherein the ?rst processor and
the second processor are implemented in a single SIMD pro
cessor.

20. A logic simulator for simulating a connectivity level
description of an integrated circuit, where the connectivity
level description comprises a plurality of logic elements, the
logic simulator comprising:

a parallel processor having a plurality processing units
capable of simultaneous execution by the parallel pro
cessor; and

a host processor con?gured to,
cluster logic elements into cluster groups each cluster

group comprising at least one of the plurality of logic
elements, where the cluster groups are sized such that
each cluster group is con?gured to be simulated on
one of the processing units of the parallel processor,
wherein each cluster group is de?ned by a height
corresponding to a number of logic levels of the clus
ter group and a width corresponding to a number of
logical outputs of the cluster group, where the height
and width of the cluster group de?ne the size of the

US 8,738,349 B2
17

cluster group, and wherein the height and Width com
bination of at least one cluster group differs from the
height and Width combination of at least one other
cluster group, and

map each cluster group for simulation by one of the
plurality of processing units.

21. The logic simulator of claim 20, Wherein the parallel
processor has a SIMD architecture.

22. The logic simulator of claim 20, Wherein the parallel
processor has a general purpose graphics processing unit
(GP-GPU) architecture.

23. The logic simulator of claim 20, Wherein the parallel
processor has a compute uni?ed device architecture (CUDA)
architecture.

24. The logic simulator of claim 20, Wherein the parallel
processor comprises a plurality of cores each having a plu
rality of the processing units.

25. The logic simulator of claim 24, Wherein the parallel
processor comprises a device memory connected to each of
the plurality of cores and a shared memory, Wherein the
shared memory is con?gured for simultaneous access by each
of the processing units Within one of the cores, during a
processing cycle.

26. The logic simulator of claim 20, Wherein the connec
tivity level description is a netlist and the logic elements are
logic gates Within the netlist.

27. The logic simulator of claim 20, Wherein the host
processor is further con?gured to separate the cluster groups
into one of a plurality of layers, from a lowest level layer to a
highest level layer.

28. The logic simulator of claim 27, Wherein the host
processor is further con?gured to balance the cluster groups.

29. The logic simulator of claim 27, Wherein all a plurality
of the cluster groups in a layer is con?gured for simultaneous
simulation by the parallel processor.

30. The logic simulator of claim 27, Wherein the height of
each cluster group is a gap height, Which is the number of

20

25

30

35

18
logic levels in a longest logic chain Within the cluster group,
and Wherein the Width is a lid Width, Which is the number of
logical output values provided by the cluster group after a
simulation cycle.

31. The logic simulator of claim 30, Wherein the host
processor is further con?gured to set the respective gap height
and lid Width for each cluster group such that each cluster
group is con?gured for simulation on one of the processing
units.

32. The logic simulator of claim 20, Wherein the host
processor is further con?gured to cluster the logic elements
using a logic element sharing scheme.

33. The logic simulator of claim 20, Wherein the host
processor is further con?gured to cluster the logic elements
using an activation pro?le scheme.

34. The logic simulator of claim 20, Wherein the parallel
processor is con?gured to simulate all cluster groups of a
level in a simulation cycle.

35. The logic simulator of claim 20, Wherein the parallel
processor is con?gured to:

identify all cluster groups that have a changed input during
a simulation cycle; and

simulate the identi?ed cluster groups having the changed
input.

36. The logic simulator of claim 20, Wherein the host
processor is con?gured to identify cones of logic elements
Where each cone has an activity level.

37. The logic simulator of claim 36, Wherein the host
processor is con?gured to assign to at least one cluster group
only cones having activity levels beloW a threshold value.

38. The logic simulator of claim 36, Wherein the host
processor is con?gured to assign to at least one cluster group
only cones having activity levels above a threshold value.

39. The logic simulator of claim 20, Wherein the host
processor and the parallel processor are implemented in a
single SIMD processor.

* * * * *

