
Chico: An On-Chip Hardware Checker
for Pipeline Control Logic

Andrew DeOrio, Adam Bauserman, Valeria Bertacco
Dept. of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor
{awdeorio, adambb, valeria}@umich.edu

ABSTRACT
The widening gap between CPU complexity and verification
capability is becoming increasingly more salient. It is im-
possible to completely verify the functionality of a modern
microprocessor before shipping, much less before tape out.
Recent studies indicate that the majority of errors in these
designs are centered on control and forwarding logic[9]. To
address this problem, we present Chico, an efficient approach
to on-chip hardware correctness that specifically targets es-
caped design errors in these high risk functional blocks. Our
solution includes an on-chip checker block that monitors the
correctness of potential data dependencies and program or-
der of the executed instructions before they are allowed to
commit. If this online checker detects a mismatch, the pro-
cessor’s exception handler is invoked, reconfiguring the sys-
tem to a known-correct, formally-verified mode of operation
which can correctly re-execute and commit the faulty in-
struction. The processor can then resume its normal, high
throughput mode of operation. In our experimental setup,
we have implemented Chico in an out-of-order processor de-
sign and evaluated its performance impact on 11 distinct
buggy variants of the design running SPECint benchmarks.
Our results indicate that Chico can overcome the errors
present in these buggy designs at a minimal performance
cost, ranging from less than 1% up to 4%. In addition,
we evaluated Chico’s area cost and found it to be an order
of magnitude smaller than other popular solutions such as
DIVA[10], with an area impact of less than 3% for our ex-
perimental processor. Our approach is novel in that it shows
no appreciable performance degradation on a correct design,
and it is a low complexity, area-frugal solution compared to
previous work.

1. INTRODUCTION
The control logic portion of complex digital systems is

notoriously difficult to test and debug. The growing com-
plexity of large out-of-order cores further compounds this
issue. For these reasons, the correct design of a pipeline’s
control logic is such a complex problem that it is often un-
achievable. As a result, this portion of the design is the
culprit for more than half of the escaped bugs reported in
modern processors’ errata documents[8].

Simulation-based verification is the mainstream approach
used in industry to validate a design and correct any de-
sign errors. However, due to the complexity of the design
state space, only a small fraction of the design’s functional-
ity can be validated within the available development time
window. Even so, bugs are difficult to diagnose and re-

solve once identified. Frequently, this requires analyzing ex-
tremely long simulation traces in order to identify the root
cause of a problem. Formal verification techniques, while
capable of checking the correctness of a design aspect under
all possible execution situations, can only be deployed for
very simple designs.

Recently, a few runtime verification solutions have been
proposed by the research community [9, 10, 2]. A common
trait of these solutions is the use of one or more on-chip
checkers which can detect all or some functional errors by
monitoring the processor’s execution flow. If an error is de-
tected, most solutions will provide a correction mechanism,
which enables the processor to overcome the buggy configu-
ration at a performance cost. Hence, the impact of an error
in an aspect protected by an online verification mechanism is
limited to a graceful performance degradation, rather than
incorrect results or, possibly, a system crash. Thus, a key
benefit of these runtime verification solutions is that they
enable the verification team to focus its efforts on the de-
sign’s execution scenarios that arise most frequently, and
relieve the burden of striving to fully verify a design before
its release to the market.

1.1 Contribution of This Work
In this paper we present an on-chip checker solution, called

Chico, which specifically targets the most critical control as-
pects of out-of-order processor designs. Because of Chico’s
specialized focus, its checking and correction mechanisms re-
quire very few hardware resources, resulting in an extremely
small area overhead, a full order of magnitude less than some
previous approaches such as DIVA[10]. We made the choice
to focus exclusively on control logic because of the large frac-
tion of escaped bugs that originate in those blocks, and their
critical impact on the system’s correct operation.

Chico consists of a checker hardware block that moni-
tors the flow of instructions executed by the processor, and
checks that the control aspects of the execution are per-
formed correctly: source value retrieval, data forwarding,
branching selection, dynamic execution flow, deadlock, etc.
Instructions are checked just before the commit stage, thus
avoiding unnecessary expenditure of effort on errors that
may appear during speculative operations. If an error is de-
tected, Chico uses the processor’s exception handling mech-
anism to prevent the problematic instruction from complet-
ing. It then forces the processor to re-configure into a bare-
bone system by disabling most performance features (includ-
ing pipelining, data forwarding, branch prediction, etc.) and
re-executes the same instruction in this configuration. The
barebone version of the design, also called degraded mode,



is sufficiently simple that it can be formally verified at de-
sign time, thus we can guarantee correct completion of the
instruction. Once the buggy state has been overcome by
degraded mode, the normal mode of operation is resumed
along with full-speed execution.

Our solution presents several novel advantages. First of
all, Chico requires connections to just a handful of the de-
sign’s signals, hence it can be easily integrated into a wide
range of pipeline architectures. Additionally, our solution
is free from false positives, triggering the degraded mode of
operation exclusively when a bug arises. In contrast, other
solutions described in the literature[9] allow false positives
to trade accuracy (and thus performance) for area overhead.

2. RELATED WORK
Runtime verification solutions and the use of on-chip check-

ers have started to appear only in recent years, one of the
first works in this domain being DIVA[10]. DIVA is a solu-
tion deploying a simple, but complete, processor core next
to a complex core. The simple core re-executes and veri-
fies the results of all instructions about to complete in the
complex core. Chico differs from DIVA in that it does not
need to recompute results and is therefore able to offer a sig-
nificant reduction in area cost. Based on our experimental
results, Chico’s area is an order of magnitude smaller than
DIVA. DIVA provides greater coverage than our design, but
at the cost of significantly higher hardware overhead and
prohibitive wire routing challenges, as it must connect to
each stage of the complex core. Moreover, the DIVA checker
occasionally causes the fast CPU core to stall, incurring a
performance penalty even when no error has occurred. Our
proposed method has no performance impact during nor-
mal operation, only when a faulty instruction is flagged and
re-executed by the checker is any degradation realized. Ad-
ditionally, the significant extra wiring required by DIVA to
connect each processor stage to its checker counterpart is
eliminated in the Chico solution. Consequently, Chico is not
as susceptible to timing, wiring delay and routing problems.
All of the this can be achieved with little sacrifice of error
coverage, since control logic is the most frequent source of
functional bugs. Finally, our Chico checker can be kept ex-
tremely simple because we rely on the main processor itself
to recover from an error (by reconfiguring it to a barebone
system). In contrast, the DIVA checker includes a complete
processor implementation, since the checker is also in charge
of the recovery.

Another runtime verification solution is Field Repairable
Control Logic (FRCL) [9], a recently proposed method used
to correct design faults. Similar to our approach, faulty in-
structions are executed in a degraded mode to correct errors.
However, the error detection method is not as automated as
with Chico. Instead, the values of control bits in the proces-
sor are matched at runtime against programmed “bug pat-
terns.” The method is quite flexible, though bugs need to
be manually discovered and characterized by a verification
engineer before a pattern can be created to correct them.
Because FRCL observes only a small number of signals and
has limited storage space for bug patterns, error conditions
must often be over-specified. This leads to a high incidence
of false positives which further increases as more patterns are
added. Our method utilizes the same recovery mechanism
as FRCL, but relies on a powerful, accurate and automated
mechanism for bug detection.

In contrast to our checker which targets a specific class
of errors, on-chip assertion processors [6] provide a more
general solution, checking arbitrary properties on the chip
at runtime. However, assertions must be selected on a per-
design basis, thus the use of this solution requires a lot of
engineering effort. Our proposed method targets a common
class of design bugs, while requiring minimal effort for design
time integration.

The use of hardware checkers has found an application
supporting design-time formal verification. To this end,
Bayazit and Malik have suggested a hybrid strategy [2] that
combines hardware checkers with model checking. Their
technique would allow an engineer to verify distributed prop-
erties too complex or distributed to be verified by a runtime
checker, such as cache coherence in a multiprocessor system.

3. CHICO OVERVIEW
Chico is an on-chip runtime checker designed to verify

correct operation of the forwarding and control logic blocks
in out-of-order processors. The checker is embedded in the
processor design before instructions are committed. Figure 1
shows a schematic of a generic out-of-order processor design
augmented with Chico. The checker adds two extra pipeline
stages to the system, a Setup and a Compare stage, in ad-
dition to an extra “golden” register file where only validated
register values are stored.

Chico is placed between the execute and the commit stages,
thus enabling complete recovery of the processor before any
architectural state is affected or erroneous results can propa-
gate outside the core. Each instruction passing through the
pipeline is checked before it can move on to commit or write
its result to memory or the register file. Chico performs a
series of checks on each instruction. First, it verifies that
the values of each source operand match the last committed
value in the golden register file. Additionally, the PC of each
instruction is checked against the following instruction’s PC
to ensure correct program order. Should a major error cause
the core to hang (deadlock), failing to commit an instruction
within a specified number of clock cycles, a watchdog timer
will ensure forward progress. If a failure is detected, an ex-
ception is raised and the processor switches to a degraded

mode which is a fully functional, but barebone version of
the system, obtained by disabling all units or features which
boost the performance of the system, including pipelining
itself. The benefit of this mode of operation is that it is
typically simple enough to be formally verified, trading per-
formance for correctness. While in degraded mode, pipelin-
ing is disabled and the failed instruction is run through by
itself, thus avoiding potentially negative interactions with
other instructions that would be in flight at the same time.
Because the system’s functionality in degraded mode has
been completely verified, the instruction will compute the
correct result, although extra cycles will be required for it
to commit. After the failed instruction passes the checker,
the normal mode of operation is re-enabled.

3.1 Strengths and Limitations
Chico was designed to overcome and correct errors occur-

ring as a result of functional design bugs in the data forward-
ing and control logic portions of the processor. Because of
its design, it provides the added benefit of protecting the
system against transient errors occurring in these units of
the core. Chico also protects against permanent transistor



IF ID IS OK? Yes

No

RSRSRSRSRSRSRSRS

ROB

C
O
M
M
IT

EX CHICO

S
e
tu
p

s
ta
g
e

C
o
m
p
a
re

s
ta
g
e

Golden

Reg File

Figure 1: Chico integrated in an out-of-order pipeline.

Chico checks each instruction before it proceeds to the com-
mit stage. If the check fails, the system switches to degraded
mode and re-executes the faulty instruction. The Chico hard-
ware checker consists of two additional pipeline stages, Setup and
Compare, and a golden register file to store the verified-correct
register values.

failures in the control units, however protection against this
latter type of error comes at a high performance cost because
the recovery mode would be triggered very often. Finally,
Chico can be used to shorten the time between first tape-
out and customer release by facilitating the localization of
control bugs on test chips between tapeout revisions.

Note, however, that the checker does not recompute the
results of any instruction, it simply checks that the control
information is correct. This is a consequence of assuming
that core datapath components, such as adders, multipliers,
logic functional units, etc., are correct. This assumption was
made after observing that the verification of the processor’s
datapath benefits from a more mature methodology, and
it is more successful in practice because it can rely on a
well-defined specification and on several product generations
delivering equivalent functional units. This observation is
corroborated by the large majority of escaped bugs that are
found in control logic blocks[9]. Because of our assumption
we can maintain a very simple and lightweight design for
our Chico checker, focusing exclusively on checking control
logic activity. Note in addition that the Chico checker is
only responsible for checking the correctness of the system’s
execution, but not recomputing the correct results in case of
error – the degraded mode will take care of that. This aspect
further simplifies the design of Chico, in fact, it has been
argued on several occasions in the literature that checking a
result is a simpler task than computing it[2].

The specific set of design properties we rely upon are listed
below. Note that all of them are fairly straightforward and
can be formally verified even in a complex design, since they
involve few sequential elements. Arithmetic units such as
multipliers can also be verified by checking their functional
equivalence with a simple and correct implementation of the
same function.

1. ALUs and other arithmetic units compute the correct
result, for any given set of input operands.

2. The datapath blocks are correctly connected, that is,
in absence of any dependency between instructions, ex-
ecution proceeds correctly. This is equivalent to saying
that the execution of individual instructions produces
the correct result.

3. The memory subsystem works properly, that is, given
a (data, address) pair, the memory is accessed at the
proper address and the corresponding data is written
or retrieved.

from core

Golden 

register 

file

writeread

Compare stage
- Check register values

- Check PC against 

following instruction

- If OK, write result

SQUASH! (check failed)

golden values

result
source regs
decoded inst

CHICO

Setup stage
- Determine operands

- Read source regs

- Compute target PC

Figure 2: Components of the Chico checker. The checker
is comprised of two pipeline stages, Setup and Compare, and
an additional “golden” register file. The Setup stage reads the
golden register file and determines which source registers need to
be checked, while the Compare stage compares these values with
the actual values. The Figure also shows the signals that are
exchanged between the checker blocks.

Chico can also detect and correct permanent and tran-
sient faults that occur in covered blocks. Transient faults
are dealt with by simply invoking the degraded mode of
the system and recovering the instruction that suffered the
fault. Permanent faults are different in that they cause er-
rors which continue to manifest themselves even after re-
executing the instruction in degraded mode. The risk is
that the system may enter an infinite loop in which it keeps
re-executing the same instruction with no forward progress.
Hence, if an instruction is deemed to be erroneous even af-
ter being re-executed, Chico will raise an exception. The
rationale behind this design choice was that if we let the
instruction commit even when an error was detected after
re-execution, the erroneous instruction would write an incor-
rect result with high probability, and this would undermine
the integrity of the system.

3.2 Checker Design
Chico is divided into two pipelined stages, Setup and Com-

pare, which are inserted in the pipeline directly before the
commit stage. In addition, we inserted a small architected
register file, which is read in the Setup stage and written
in the Compare stage. Figure 2 shows a schematic of the
checker blocks and the signals that they exchange. In this
section, we present the architecture of the two stages and
we show that this two-stage design is needed to check the
correctness of the dynamic program flow.

Checker Setup Stage

The Setup stage of the checker retrieves the source register
values from the checker’s private architected register file (the
golden register file) using the decoded instruction’s register
indices. It would have been possible to design the checker
so that the committed register state was accessed instead by
indexing through a private, golden retirement rename table
into the physical register file. Since a rename table would
require nearly as much space as an architected register file,
we opted for the register file. This approach is also safer, as
it does not rely on the correctness of the retirement rename



Error

Degraded

Mode

Check

fails
Normal

Failed instruction

fetched again

Failed instruction

executes correctly

and commits

Check

passes

Failed instruction

in re-execution

Figure 3: Pipeline control FSM. This FSM resides in the
Checker Setup Stage and controls the execution flow when a con-
trol error is detected in an instruction that is about to commit. It
squashes the instructions in flight and takes control of fetching in-
structions until the problematic instruction has been re-executed.

table. Keeping a separate register file reduces the checker
complexity and guards against possible errors.

The Setup stage includes logic to determine which operands
must be checked. A multiplexer produces the expected PC
of the following instruction, either the branch target (when
the instruction is a taken branch) or the next PC (PC+4).
The Setup stage is also home to a simple finite state ma-
chine (FSM) that controls the execution flow when an error
is detected, squashing all instructions in the pipeline, pass-
ing the PC of the instruction to be re-run to the fetch stage
and disabling any instruction fetching until the problematic
instruction has left the out-of-order core (Figure 3).

Checker Compare Stage

The second checker stage is responsible for determining if
the instruction executed with the correct source register val-
ues, if the program counter corresponding to the instruction
was the correct one, and finally monitors the occurrence of
deadlocks. The values of the source registers are compared
against those retrieved in the golden register file. The com-
parison is only performed on the source registers specified
by the instruction being checked. The PC of the instruction
currently in the Compare stage is compared against the ex-
pected value computed in the previous stage. This verifies
that branches have been resolved properly and no instruc-
tions have been skipped in the dynamic flow.

Note that we can only check the correctness of the instruc-
tion flow by comparing two successive instructions’ program
counters. We do this by comparing the PCs of the instruc-
tion in Setup with the one in Compare. It is possible that
the Setup stage could be empty, due to an earlier stall or
squash. In this case, we hold on to the instruction in Com-
pare until a new instruction arrives in Setup, then perform
the PC check and release the instruction in Compare.

If both the registers and PC checks are successful, the in-
struction’s result is written to the golden register file. Other-
wise, a squash signal is asserted, flushing the entire pipeline
up to (and including) the instruction in the Compare stage.
This signal also causes the pipeline control FSM in the Setup
stage to activate the degraded mode (see Figure 3). The PC
register in the fetch stage is reset to match that of the faulty
instruction and the pipeline control FSM ensures that the

instruction passes through the pipeline alone. When the re-
executed instruction reaches the Setup stage again, the FSM
transitions out of degraded mode, enabling the fetching of
the next instruction and resuming normal execution.

3.3 Integrating the Checker
Integrating Chico into a pipeline is a relatively straight-

forward process. With reference to Figure 1, the checker is
inserted between the reorder buffer and the commit stage
(or between memory and writeback stages in an in-order
pipeline). The interconnects in the pipeline must be aug-
mented to pass along source register indices, decoded reg-
ister and result values, and the PC. Often, this extra in-
terconnect is already available in the processor’s pipeline to
support instruction replay after non-deterministic latencies,
in which case the integration phase does not have any area
impact on the design. Finally, the output of the checker indi-
cating a failed assertion must be connected to the pipeline’s
exception handler. Note that integration into an in-order
pipeline requires consideration of data forwarding paths since
additional stages are being inserted.

4. VERIFICATION METHODOLOGY
The verification of a component designed to verify another

component is a challenging task. We took an incremental
approach to verifying Chico, with the ultimate goal of inte-
grating it into a complex out-of-order processor. Our test-
ing process was divided into three phases: unit-level testing,
testing in a simple in-order pipeline and final integration. In
addition, the degraded mode of execution must be formally
verified to be fully correct.

For each checker stage, we created a set of directed tests
to verify the basic functionality at the module level. The
test development was independent of the checker implemen-
tation, and based only on its specification, so as to achieve
maximum separation between implementation and testing.
Most of the errors encountered during this early phase of
testing were related to instruction semantics, particularly in
determining which registers were actually accessed by each
instruction, and hence should be checked by the checker.

In order to test our checker before integrating it into the
out-of-order core, we inserted it in a simple 5-stage in-order
pipeline. This was valuable in that it helped us work out
any implementation-related bugs that might not have been
caught with isolated testing. We randomly inverted control
signals while running a large set of test programs, comparing
the values written back on commit to those produced by
a known-good processor model. An unexpected challenge
arose here when we realized that adding two stages before
memory and writeback would require extra forwarding logic.
Conveniently, the checker helped in its own integration by
pointing out errors in the new forwarding logic.

Final integration of Chico into the out-of-order processor
design was relatively uneventful as a result of the thorough
testing carried out beforehand. The pipeline’s exception
handling logic had to be slightly altered to handle Chico’s
squash signal, and the system’s fetch enable was connected
to the checker’s pipeline control FSM.

The degraded mode of operation requires little alteration
to the processor core into which Chico is being integrated.
It is important to note that degraded mode does not require
a new simplified version of the design. Many non-essential
units, such as branch predictors and speculative execution



units can be disabled with a variant of chicken bits, which
are common in many design developments. Additional sim-
plification is achieved by virtue of the single instruction ex-
ecution, only one instruction is allowed in the pipeline at a
time when in degraded mode. The whole ISA is verified,
one instruction at a time, allowing formal tools to abstract
away forwarding, squashing and out-of-order execution logic
as well as greatly reducing the fraction of the design involved
in each individual property proof. The combination of dis-
abled logic blocks and unused logic due to single instruction
execution make the degraded mode simple enough to be ver-
ified by traditional formal tools.

5. EXPERIMENTAL EVALUATION
We implemented and integrated the Chico checker in a

out-of-order pipeline design, and evaluated its error-detection
qualities by creating eleven variants of the processor, each
with a different design error. All the errors were inspired
by the bugs reported in errata documents of current pro-
cessors in the market today. We measured the performance
impact associated with using Chico by running three differ-
ent types of testbenches on these design variants: pseudo-
random testing, targeted direct test cases and the SPECint
benchmark suite. These three types of tests enabled us to
evaluate the performance of Chico in scenarios ranging from
real-world applications to targeted extreme execution flows.
In addition, we synthesized our design to estimate Chico’s
area impact.

A number of architectural parameters may impact the
performance penalty of a chip utilizing our checker. Since
the recovery mechanism invokes the built-in exception han-
dler, squashing all instructions in flight in an out-of-order
processor, the penalty due to a recovered error may vary.
Pipeline depth is the most significant factor in determining
this penalty. Dependencies between instructions, execution
latencies (especially for loads and stores) and branch predic-
tion accuracy all have an effect on the performance impact.
We quantified the penalty for varying error rates using an
RTL simulation of a moderately sized out-of-order proces-
sor. The out-of-order pipeline design used in our tests im-
plements early branch resolution, meaning that branches are
resolved in the core rather than on commit. Because of this,
the penalty for mispredicted branches is not affected by the
addition of Chico’s two checker stages.

Issue / retire capacity single issue/retire

Physical Registers 64
ROB entries 32

Reservation stations 16
Memory access 4 load units

Memory latency 8 cycles
Caches 128 line I-cache and D-cache

Branch prediction 64 entry hashing, 2-bit counter

Table 1: Characteristics of the out-of-order testbench processor
in which we integrated Chico.

5.1 Experimental Setup
Chico was developed in Verilog HDL and integrated into

a 64-bit out-of-order pipeline which implements a subset of
the Alpha ISA. The subset includes about 95% of the integer
operations and all of the branching instructions. Floating
point, byte manipulation and multimedia instructions were
excluded. We made use of three different experimental se-

tups to execute programs in the processor, a standard fetch
for running targeted assembly test cases, a connection to a
constrained random stimulus generator, and a parallel lock-
step connection with an architectural simulator. The archi-
tectural simulator allowed us to simulate SPECint bench-
mark by emulating the instructions not supported by our
ISA. The features of the out-of-order processor are shown in
Table 1. Note that while here we evaluate Chico on a single
issue/retire design, the checker could easily be extended to
multiple issue/retire by adding a dependency check among
instructions retired simultaneously.

In order to evaluate the bug-detection capabilities of our
checker, we made use of a set of buggy processor designs
implemented in Verilog. The bugs were created to mimic
escaped bugs found in errata documents for modern pro-
cessors, including x86, PowerPC and ARM[3, 4, 5]. The
Verilog model of our out-of-order processor was manually
modified, inserting specific bugs as necessary. These bugs
are described in Table 2.

Bug Description

baseline no bugs
two-stores two consecutive stores cause incorrect

address computation
two-branches two consecutive branches corrupt

program order
store-dep store followed by a dependent

instruction fails
mult-branch multiply followed by a branch causes

branch to resolve incorrectly
load-branch conditional branch depending on a

preceding load fails
rob-full full reorder buffer causes disruption

in program flow
rs-full all reservation stations full causes a

missed instruction
dep-instrs two consecutive dependent instructions

fail
zero-reg-CDB forwarding from zero reg fails with

simultaneous CDB broadcast
write-zero-reg write to zero reg causes non zero

values to be read
regA-regB-fwd simultaneous regA and regB

forwarding causes incorrect reg value

Table 2: Bugs introduced into the out-of-order core

5.2 Simulated Workloads
We have evaluated the effectiveness and performance of

Chico with three types of workloads: constrained random
stimulus, directed assembly language test cases and SPECint
benchmarks.

In the first setup, instruction streams generated by a closed
loop constrained random test generator[8] were feeding the
instruction bus of the processor. For this simulation we used
our baseline out-of-order processor design without inserted
bugs. The generator was configured to exercise the full ISA
of our system, stressing in particular dependencies and data
forwarding through memory. This gave us additional reas-
surance that the checker operated as designed.

We also utilized a set of directed tests in assembly lan-
guage that were developed as part of the verification pro-
cess during the initial development of the processor design.
These test cases are described in Table 3. Each of the test-



benches runs for a moderately high number of cycles and
stress all the key features of the processor, particularly the
control aspects. We found experimentally that this regres-
sion suite was capable to expose all the 11 bugs that were
included in the design variants. These programs, while more
suited to exposing bugs, might give pessimistic estimates of
performance compared to real workloads. Because the test
cases were designed to maximize the number of in-flight in-
structions, the penalty incurred on a checker recovery also
tends to be maximized.

Name Description

bubblesort bubble sort an array of numbers
combRec recursively calculates combinations
dude sorts, divides and square roots arrays
fib rec computes Fibonacci sequences recursively
objsort sort items in a linked list
parsort comparison sort an array of numbers
prime finds all prime numbers less than X
powers computes large powers
series computes geometric and arithmetic series

Table 3: Targeted test cases written in assembly language

To obtain results reflecting more accurately real-world ex-
ecution flows, a set of 12 SPECint benchmarks were used
in our third experimental setup. These provided us with
an accurate estimate of the effect of the checker recovery
on CPU performance. Because the benchmarks are pro-
hibitively large, they could not be executed in their entirety
using our RTL model. To derive a shorter trace that would
be representative of each SPECint benchmark, we used Sim-
Point. The traces generated by SimPoint are derived from
the actual benchmarks, but each contain less than 10k in-
structions. In effect, the traces fast-forward through the
initialization of each benchmark, including only the core
part of the program most indicative of overall performance.
This method allowed us to extract realistic performance data
while maintaining a practical simulation time. The bench-
marks were compiled to target the full Alpha ISA, includ-
ing a few instructions not handled by our processor. To
solve this problem, we ran our model in lockstep with the
SimpleScalar[1] simulator. SimpleScalar would simulate the
SPECint benchmark and output a dynamic trace file which
we fed to our RTL processor design. The trace file was
consulted by the processor when it encountered instructions
that were not implemented in our design. By doing so, we
were able to follow the correct execution path and also re-
ceive the proper data from emulated system calls. This ex-
periment provided us with a more realistic evaluation of the
frequency of occurrence of escaped bugs during a typical
workload execution and, consequently, of the performance
penalty incurred by the use of Chico.

5.3 Results
When no buggy configuration arises, our method has a

negligible impact on processor performance. The additional
pipeline stages inserted for the Chico checker increase in-
struction latency, but this has no significant effect on the
instructions-per-cycle (IPC) for large test programs. We
purposely designed the processor to achieve this by freeing
physical registers immediately after instructions leave the
ROB, and by resolving branches during execution.

Table 4 reports our experimental results over the SPECint
benchmarks. The first column indicates the testbench name,

0

5

10

15

20

25

bzip2 crafty eon gap gcc mcf parser twolf vortex vpr

C
y
c
le
 p
e
n
a
lt
y
 p
e
r 
d
e
te
c
te
d
 e
rr
o
r

Figure 4: Average cycle penalty for each error recovery over
all 11 buggy versions of the out-of-order pipeline equipped with
Chico, while executing SPECint benchmarks.

the second the number of dynamic instructions executed,
the third is the relative IPC, that is, the ratio between
the instructions-per-cycle when executing the testbench on
a buggy design version and the IPC when executing on a
correct design version which has not been equipped with
Chico. Finally, the last two columns report the total num-
ber of recoveries triggered by Chico and the average number
of penalty clock cycles incurred during each recovery. Note
that the table reports results averaged over all the 11 buggy
variants of the design. Figure 4 shows graphically the av-
erage number of clock cycles of penalty incurred with each
Chico recovery, the same data reported in the last column
of Table 4.

When errors are present and caught by the checker, we
still observe a fairly small impact on the overall IPC, partic-
ularly when running SPECint benchmarks. The slowdown
in this case ranged from less than 1% to 4%.

The SPECint benchmarks provide the best workload for
determining the checker’s performance. In general, these
programs exhibited a lower penalty per fault and degrada-
tion in the overall IPC (1% - 4%). However, the SPECint
suite exposed significantly fewer bugs than the targeted test
cases. Three programs, gzip, mcf and perlbmk were unable
to expose any of the embedded bugs.

Figure 5 reports the same information as Figure 4 for the
directed testbenches suite. It can be noticed that the penalty
incurred is much higher in this suite compared to SPECint.
The reason lies in the high density of in-flight instructions,
which was achieved by developing this suite directly in as-

Benchmark #Instr rel IPC Recoveries Penalty

bzip2 8613 0.967 77 13.6
crafty 7061 0.996 33 22.0
eon 6634 0.987 60 16.3
gap 7071 0.976 118 15.1
gcc 6534 0.975 37 15.2
gzip 5985 1 0 N/A
mcf 4771 1 0 N/A
parser 6148 0.987 76 20.9
perlbmk 5137 1 0 N/A
twolf 7821 0.992 48 12.6
vortex 5551 0.995 25 15.8
vpr 6927 0.993 39 14.1

Table 4: Performance summary for SPECint benchmarks, aver-
aged over all buggy designs, relative to baseline design.



0

20

40

60

80

100

120

140

160

prime series powers fib_rec objsort parsort dude combRec bubblesort

C
y
c
le
 p
e
n
a
lt
y
 p
e
r 
d
e
te
c
te
d
 e
rr
o
r

Figure 5: Average cycle penalty for each error recovery over
all 11 buggy versions of the out-of-order pipeline design equipped
with Chico, while executing each of the targeted test cases.

sembly. We also note that this suite was more effective at
exposing bugs than the SPEC benchmarks. The objsort pro-
gram is an example of nearly worst-case behavior, with an
exceptionally high penalty for checker recovery. In this pro-
gram, a large number of back-to-back dependent memory
operations may be flushed from the pipeline whenever an
error is encountered. The overall slowdown with directed
test cases is greater than with the SPECint suite, with up
to 30% performance impact in the worst case.

Simulation with the random stimulus generator reinforced
our confidence in Chico’s ability to differentiate bugs from
correct operation. We ran nearly 12 million dynamic in-
structions using this setup, finding that Chico flagged no
false positives. Interestingly, Chico exposed a few escaped
bugs in our processor core which had not been caught dur-
ing verification when it was originally designed by a team
of graduate students. The results from our direct random
stimulus tests reassured us that Chico was free from false
positives and operated as designed.

5.4 Area Cost
We estimated the area overhead of our Chico implemen-

tation by synthesizing the experimental processor design
with and without the inclusion of Chico. To this end, we
used Synopsys Design Compiler targeting a 90nm TSMC li-
brary. Design Compiler was configured with timing as the
primary objective and area as the second; a basic wire delay
model from the library was used. The resulting checker area
was 0.065mm2, while the processor core occupied 2.291mm2 ;
thus Chico comprises 2.8% of the total area. Note that 2.8%
is a very conservative area penalty due to the small size of
the processor used for experimentation; a larger design, for
example one that includes a floating point unit, a load-store
queue, or other features, would further reduce Chico’s rela-
tive size. Chico’s total area can be broken down into its three
components, with 5% comprised of the Setup stage, 2% of
the Compare stage and 93% of the architected register file.

For comparison, we used the same methodology to es-
timate the area of a DIVA[10] solution in 90nm technol-
ogy. Our DIVA implementation was a simple, single-issue
5 stage pipeline with a 0.5KB instruction cache and a 4KB
data cache very similar to the one described in [10]. We
synthesized the DIVA processor core with the same 90nm
TSMC library as was used for Chico and approximated the
cache areas with Cacti 4.2[7]. Note that this is a conser-
vative estimate, as it is only the area of the DIVA checker

processor itself and does not include any of the extremely
complex interconnects necessary to connect each stage of the
checker processor to its corresponding stage in the processor
core. Our estimated area for a single-issue DIVA processor
is 0.673mm2, about 10 times the area of Chico.

6. CONCLUSIONS
We have presented Chico, an efficient approach to on-chip

runtime verification that specifically targets functional er-
rors in the control logic blocks of a processor. The area
penalty of our Chico implementation is 10 times less than
an approach based on a full checker processor. By taking
advantage of a formally verified degraded mode, our solu-
tion recovers from functional errors in exchange for a small
performance impact. Our solution is novel in that it targets
a critical class of design bugs and optimizes its design based
on the characteristics of this class of bugs. The error detec-
tion logic does not trigger false positives, resulting in zero
performance degradation when no bugs are encountered. We
show an average performance penalty ranging from less than
1% to 4% for the SPECint benchmarks running on a range
of buggy processor designs. Our checker is effective in con-
verting correctness concerns into performance issues, and it
supports the verification team in managing the complexity
of large out-of-order CPUs, increasing reliability and easing
the verification process.

7. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An

infrastructure for computer system modeling. IEEE

Computer, 35(2):59–67, February 2002.

[2] A. Bayazit and S. Malik. Complementary use of
runtime validation and model checking. In
International Conference on Computer-Aided Design,
pages 1052–1059, November 2005.

[3] DDJ Microprocessor Center. http://www.x86.org/.

[4] IBM Corporation. IBM PowerPC 750GX and 750GL
RISC Microprocessor Errata Notice, July 2005.

[5] Intel Corporation. Intel(R) StrongARM(R) SA-1100
Microprocessor Specification Update, February 2000.

[6] J. Nacif, F. de Paula, H. Foster, C. Coelho, and
A. Fernandes. The Chip is Ready. Am I done?
On-chip Verification using Assertion Processors. In
Symposium on Integrated Circuits and System Design,
pages 55–59, September 2004.

[7] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 4.0,
June 2006.

[8] I. Wagner, V. Bertacco, and T. Austin. Stresstest: An
automatic approach to test generation via activity
monitors. In Design Automation Conference, June
2005.

[9] I. Wagner, V. Bertacco, and T. Austin. Shielding
against design flaws with field repairable control logic.
In Design Automation Conference, pages 344–347,
July 2006.

[10] C. Weaver, K. C. Barr, E. D. Marsman, D. Ernst, and
T. Austin. Performance analysis using pipeline
visualization. In IEEE ISPASS, pages 59–67, June
2001.


